Thanks to the advances in micromachining fabrication technologies and significant
cost reduction due to mass production, miniature sensors of angular rate, or
gyroscopes, found their way into the everyday life of every user of modern gadgets,
such as smart phones, tablets or even wristwatches. Often without realising, many
of us are carrying in our pockets fully equipped with all necessary sensors complete
inertial navigation systems that not so long ago were available only for advanced
vehicles in sea, land, air or space. Accelerometers and gyroscopes are found in
specifications of any gadget supposed to react to user movements. And one of the
most commonly used type of gyroscopes used to developed these systems is
Coriolis vibratory gyroscope (CVG).
Electric distribution networks are critical parts of power delivery systems. In recent
years, many new technologies and distributed energy resources have been inte-
grated into these networks. To provide electricity at the possible lowest cost and at
required quality, long-term planning is essential for these networks. In distribution
planning, optimal location and size of necessary upgrades are determined to satisfy
the demand and the technical requirements of the loads and to tackle uncertainties
associated with load and distributed energy resources.
December 2007, San Jose, California: It seems a long time ago.
I walked into a big networking company to head their small
Power over Ethernet (PoE) applications team. Surprisingly,
I hardly knew anything about PoE prior to that day, having been a
switching-power conversion engineer almost all my life. But it
seemed a great opportunity to widen my horizons. As you can see,
one notable outcome of that seemingly illogical career choice five
years ago is the book you hold in your hands today. I hope this small
body of work goes on to prove worthy of your expectations and also
of all the effort that went into it. Because, behind the scenes, there is a
rather interesting story to relate—about its backdrop, intertwined
with a small slice of modern PoE history, punctuated by a rather res-
tive search for our roots and our true heroes, one that takes us back
almost two centuries
Modern power systems involve large amount of investment. An electric power
system comprises of generation, transmission, and distribution of electric energy.
Growth of power systems has led to very complex networks extended across large
areas. In such situations, the proper functioning of a modern power system is
heavily dependent upon the healthy operation of the transmission lines within it.
Transmission lines are used to transmit a huge amount of power over a long
distance. But as these lines are located in the open atmosphere, they are highly
affected by different types of abnormal conditions or faults.
adio Frequency Identification (RFID) is a rapidly developing automatic wireless data-collection
technology with a long history.The first multi-bit functional passive RFID systems,with a range of
several meters, appeared in the early 1970s, and continued to evolve through the 1980s. Recently,
RFID has experienced a tremendous growth,due to developments in integrated circuits and radios,
and due to increased interest from the retail industrial and government.
RFID (radio-frequency identification) is the use of a wireless non-contact system
that uses radio-frequencyelectromagnetic fields to transfer datafrom a tag attached
to an object, for the purposes of automatic identification and tracking [38]. The
basic technologies for RFID have been around for a long time. Its root can be traced
back to an espionage device designed in 1945 by Leon Theremin of the Soviet
Union,whichretransmittedincidentradiowaves modulatedwith audioinformation.
After decades of development, RFID systems have gain more and more attention
from both the research community and the industry.
Although doing science is at the heart of discovery, the effort would have
very limited consequence in the long term without writingscience. As a social
enterprise that depends on collaboration, scientific inquiry requires its practi-
tioners to write on a regular basis. From time to time, some members of the
scientific community have been critical of the overall quality of writing by re-
searchers.
This book describes a unifying framework to networked teleoperation systems
cutting across multiple research fields including networked control system for linear
and nonlinear forms, bilateral teleoperation, trilateral teleoperation, multilateral
teleoperation, cooperative teleoperation, and some teleoperation application
examples. Networked control has been deeply studied at the intersection of systems
& control and robotics for a long time, and many scholarly books on the topic have
been already published. Nevertheless, the approach remains active even in several
new research fields, such as bilateral teleoperation, single master and multiple
slaves, trilateral teleoperation, and multilateral teleoperation
Inventors have long dreamed of creating machines that think. This desire dates
back to at least the time of ancient Greece. The mythical figures Pygmalion,
Daedalus, and Hephaestus may all be interpreted as legendary inventors, and
Galatea, Talos, and Pandora may all be regarded as artificial life ( , Ovid and Martin
2004 Sparkes 1996 Tandy 1997 ; , ; , ).
modbus-demo,
Public M_3W_D(50) As Long
Public M_4W_D(500) As Long
Public M_0W_B(100) As Long
Public M_1W_B(100) As Long
Public PLC_B(50) As Single
Public PLC_C(50) As Long
Public T1t(500) As Long
Public M_3x(500) As Long
Public M_4x(500) As Long
Public MODEL As Long
Public Party As Long