實驗題目:Hermite插值多項式 相關知識:通過n+1個節(jié)點的次數(shù)不超過2n+1的Hermite插值多項式為: 其中,Hermite插值基函數(shù) 數(shù)據(jù)結構:三個一維數(shù)組或一個二維數(shù)組 算法設計:(略) 編寫代碼:(略) 實驗用例: 已知函數(shù)y=f(x)的一張表(其中 ): x 0.10 0.20 0.30 0.40 0.50 y 0.904837 0.818731 0.740818 0.670320 0.606531 m -0.904837 -0.818731 -0.740818 -0.670320 -0.606531 x 0.60 0.70 0.80 0.90 1.00 y 0.548812 0.496585 0.449329 0.406570 0.367879 m -0.548812 -0.496585 -0.449329 -0.406570 -0.367879 實驗用例:利用Hermite插值多項式 求被插值函數(shù)f(x)在點x=0.55處的近似值。建議:畫出Hermite插值多項式 的曲線。
上傳時間: 2013-12-24
上傳用戶:czl10052678
Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs and an initial network % [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the % network with backpropagation. % % The activation functions must be either linear or tanh. The network % architecture is defined by the matrix NetDef consisting of two % rows. The first row specifies the hidden layer while the second % specifies the output layer. %
標簽: back-propagation corresponding input-output algorithm
上傳時間: 2016-12-27
上傳用戶:exxxds
This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %
標簽: generalization calculates prediction function
上傳時間: 2014-12-03
上傳用戶:maizezhen
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
標簽: Levenberg-Marquardt desired network neural
上傳時間: 2016-12-27
上傳用戶:jcljkh
This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise variance, and the Gauss-Newton Hessian. %
標簽: generalization calculates prediction function
上傳時間: 2016-12-27
上傳用戶:腳趾頭
【歐拉算法】 微分方程的本質(zhì)特征是方程中含有導數(shù)項,數(shù)值解法的第一步就是...歐拉(Euler)算法是數(shù)值求解中最基本、最簡單的方法,但其求解精度較低,一般不在...對于常微分方程: dy/dx=f(x,y),x∈[a,b] y(a)=y0 可以將區(qū)
上傳時間: 2014-01-09
上傳用戶:www240697738
#include "iostream.h" #include "iomanip.h" #define N 20 //學習樣本個數(shù) #define IN 1 //輸入層神經(jīng)元數(shù)目 #define HN 8 //隱層神經(jīng)元數(shù)目 #define ON 1 //輸出層神經(jīng)元數(shù)目 double P[IN] //單個樣本輸入數(shù)據(jù) double T[ON] //單個樣本教師數(shù)據(jù) double W[HN][IN] //輸入層至隱層權值 double V[ON][HN] //隱層至輸出層權值 double X[HN] //隱層的輸入 double Y[ON] //輸出層的輸入 double H[HN] //隱層的輸出
標簽: define include iostream iomanip
上傳時間: 2014-01-01
上傳用戶:凌云御清風
夫何一佳人兮,步逍遙以自虞。魂逾佚而不反兮,形枯槁而獨居。言我朝往而暮來兮,飲食樂而忘人。心慊移而不省故兮,交得意而相親。 伊予志之慢愚兮,懷貞愨之歡心。愿賜問而自進兮,得尚君之玉音。奉虛言而望誠兮,期城南之離宮。修薄
標簽:
上傳時間: 2017-01-09
上傳用戶:tzl1975
三維曲線曲面比較演示系統(tǒng)程序設計 設計一個圖形用戶界面(GUI)演示常見的三維函數(shù)圖形,至少包含“三維繪圖” 、“選項” 、“退出”等菜單,三維繪圖的包括:參數(shù)方程x=e-t/20cos(t), y= e-t/20sin(t),z=t其中t 為0到2π、參數(shù)方程x=t,y=t2,z=t3其中t為0到1之間(在同一圖形界面中分別繪制它們的三維曲面和三維曲線圖)。“選項”菜單主要包括:網(wǎng)格開關,圖例開關,坐標邊框開關,色度空間選擇菜單,曲線顏色菜單。
上傳時間: 2017-01-10
上傳用戶:hasan2015
Overview Input Clock = 24Mhz Preview VGA 15fps @ 60Hz VGA 12.5fps @ 50Hz Capture VGA 15fps @ 60Hz VGA 12.5fps @ 50Hz Output Format YCbCr 4:2:2 (ITU 656) YCbCr to RGB conversion R = Y + (351*(Cr – 128)) >> 8 G = Y – (179*(Cr – 128) + 86*(Cb – 128))>>8 B = Y + (443*(Cb – 128)) >> 8
上傳時間: 2013-12-24
上傳用戶:遠遠ssad