This research work aims at eliminating the off-chip RF SAW filters from fre-
quency division duplexed (FDD) receivers. In the first approach, a monolithic passive
RF filter was constructed using on-chip capacitors and bondwire inductors. The bond-
wire characteristics were studied in details and the effect of mutual inductive coupling
between the bondwires on the filter performance was analyzed. Based on that, a bond-
wire configuration was proposed to improve the frequency response of the filter. The
filter was implemented in 0.18 μm CMOS process for WCDMA applications.
To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation
(5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy
efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation
(4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing
of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna TECHNIQUES have been
considered as the key TECHNIQUES to increase the capacity of wireless communication systems. When a large-scale
antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed
antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can
be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO
and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI)
acquisition, wireless transmission technology, and resource allocation.
When we started thinking about writing the first edition of this book a few years ago, we had been
working together for more than five years on the borderline between propagation and signal processing.
Therefore, it is not surprising that this book deals with propagation models and design tools for MIMO
wireless communications. Yet, this book should constitute more than a simple combination of these
two domains. It hopefully conveys our integrated understanding of MIMO, which results from endless
controversial discussions on various multi-antenna related issues, as well as various interactions with
numerous colleagues. Obviously, this area of technology is so large that it is beyond our aim to cover all
aspects in details. Rather, our goal is to provide researchers, R&D engineers and graduate students with
a comprehensive coverage of radio propagation models and space–time signal processing TECHNIQUES
for multi-antenna, multi-user and multi-cell networks.
When we started thinking about writing this book, we had been working together for more
than five years on the borderline between propagation and signal processing.Therefore, it
is not surprising that this book deals with propagation models and design tools for MIMO
wirelesscommunications.Yet, thisbookshouldconstitutemorethanasimplecombination
of these two domains. It hopefully conveys our integrated understanding of MIMO, which
results from endless controversial discussions on various multi-antenna related issues, as
well as various interactions with numerous colleagues. Obviously, this area of technology
is so large that it was beyond our aim to cover all aspects in details. Rather, our goal has
been to provide researchers, R&D engineers and graduate students with a comprehensive
coverage of radio propagation models and space–time coding TECHNIQUES.
MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE,
Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n),
wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). This book provides a
comprehensive introduction to the basic theory and practice of wireless channel modeling,
OFDM, and MIMO, with MATLAB ? programs to simulate the underlying TECHNIQUES on
MIMO-OFDMsystems.Thisbookisprimarilydesignedforengineersandresearcherswhoare
interested in learning various MIMO-OFDM TECHNIQUES and applying them to wireless
communications.
This books presents the research work of COST 273 Towards Mobile Broadband Multimedia
Networks, hence, it reports on the work performed and on the results achieved within the project
by its participants. The material presented here corresponds to the results obtained in four years
of collaborative work by more than 350 researchers from 137 institutions (universities, operators,
manufacturers, regulators, independent laboratories and others – a full list is provided in Appendix
B) belonging to 29 countries (mainly European, but also from Asia and North America) in the area of
mobileradio. Theobjectiveofpublishingtheseresultsasabookisessentiallytomakethemavailable
to an audience wider than the project. In fact, it just follows a ‘tradition’ of previous COST Actions
in this area of telecommunications, i.e. COST 207, 231 and 259.
The last decade proved to be hugely successful for the mobile communications industry,
characterised by continued and rapid growth in demand, spurred on by new technological
advances and innovative marketing TECHNIQUES. Of course, when we refer to mobile commu-
nications, we tend to implicitly refer to cellular systems, such as GSM. The plight of the
mobile-satellite industry over the last decade, although eventful, has, at times, been more akin
to an out of control roller coaster ride.
In general there are three different TECHNIQUES for performance evaluation of
systems and networks: mathematical analysis, measurements, and computer
simulation. All these TECHNIQUES have their strength and weaknesses. In the
literature there are plenty of discussions about when to use which technique,
how to apply it, and which pitfalls are related to which evaluation technique.
Multi-carrier modulation? Orthogonal Frequency Division Multi-
plexing (OFDM) particularly? has been successfully applied to
a wide variety of digital communications applications over the past
several years. Although OFDM has been chosen as the physical layer
standard for a diversity of important systems? the theory? algorithms?
and implementation TECHNIQUES remain subjects of current interest.
This is clear from the high volume of papers appearing in technical
journals and conferences.
The family of recent wireless standards included the optional employment of Multiple-Input
Multiple-Output(MIMO)TECHNIQUES.This was motivatedby the observationaccordingto the
classic Shannon–Hartley law that the achievable channel capacity increases logarithmically
with the transmit power. In contrast, the MIMO capacity increases linearly with the number
of transmit antennas, provided that the number of receive antennas is equal to the number
of transmit antennas. With the further proviso that the total transmit power is increased in
proportion to the number of transmit antennas, a linear capacity increase is achieved upon
increasing the transmit power, which justifies the spectacular success of MIMO systems.