Emerging technologies such as WiFi and WiMAX are profoundly changing the landscape of wireless broadband. As we evolve into future generation wireless networks, a primary challenge is the support of high data rate, integrated multi- media type traffic over a unified platform. Due to its inherent advantages in high-speed communication, orthogonal frequency division multiplexing (OFDM) has become the modem of choice for a number of high profile wireless systems (e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
標(biāo)簽: OFDM-Based Broadband Networks Wireless
上傳時間: 2020-05-31
上傳用戶:shancjb
Wireless communications has become a field of enormous scientific and economic interest. Recent success stories include 2G and 3G cellular voice and data services (e.g., GSM and UMTS), wireless local area networks (WiFi/IEEE 802.11x), wireless broadband access (WiMAX/IEEE 802.16x), and digital broadcast systems (DVB, DAB, DRM). On the physical layer side, traditional designs typically assume that the radio channel remains constant for the duration of a data block. However, researchers and system designers are increasingly shifting their attention to channels that may vary within a block. In addition to time dispersion caused by multipath propagation, these rapidly time-varying channels feature frequency dispersion resulting from the Doppler effect. They are, thus, often referred to as being “doubly dispersive.”
標(biāo)簽: Time-Varying Channels
上傳時間: 2020-06-01
上傳用戶:shancjb
This paper reviews key factors to practical ESD protection design for RF and analog/mixed-signal (AMS) ICs, including general challenges emerging, ESD-RFIC interactions, RF ESD design optimization and prediction, RF ESD design characterization, ESD-RFIC co-design technique, etc. Practical design examples are discussed. It means to provide a systematic and practical design flow for whole-chip ESD protection design optimization and prediction for RF/AMS ICs to ensure 1 st Si design success.
標(biāo)簽: ESD_protection_for_RF_and_AMS_ICs
上傳時間: 2020-06-05
上傳用戶:shancjb
Over many years, RF-MEMS have been a hot topic in research at the technology and device level. In particular, various kinds of mechanical Si-MEMS resonators and piezoelectric BAW (bulk acoustic wave) resonators have been developed. The BAW technology has made its way to commercial products for passive RF filters, in particular for duplexers in RF transceiver front ends for cellular communica- tions. Beyond their use in filters, micromachined resonators can also be used in conjunction with active devices in innovative circuits and architectures.
標(biāo)簽: MEMS-based Circuits Systems and
上傳時間: 2020-06-06
上傳用戶:shancjb
GaN is an already well implanted semiconductor technology, widely diffused in the LED optoelectronics industry. For about 10 years, GaN devices have also been developed for RF wireless applications where they can replace Silicon transistors in some selected systems. That incursion in the RF field has open the door to the power switching capability in the lower frequency range and thus to the power electronic applications. Compared to Silicon, GaN exhibits largely better figures for most of the key specifications: Electric field, energy gap, electron mobility and melting point. Intrinsically, GaN could offer better performance than Silicon in terms of: breakdown voltage, switching frequency and Overall systems efficiency.
標(biāo)簽: GaN-on-Si Displace and SiC Si
上傳時間: 2020-06-07
上傳用戶:shancjb
SI-PNP 60 V 0,6 A 0,6 W 100 MHz
標(biāo)簽: 2N2905
上傳時間: 2021-07-02
上傳用戶:xiangshuai
THIS PUBLICATION IS COPYRIGHT PROTECTEDCopyright ? 2014 IEC, Geneva, SwitzerlandAll rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any formor by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing fromeither IEC or IEC's member National Committee in the country of the requester. If you have any questions about IECcopyright or have an enquiry about obtaining additional rights to this publication, please contact the address below oryour local IEC member National Committee for further information.Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduiteni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopieet les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez desquestions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisezles coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.
標(biāo)簽: iec標(biāo)準(zhǔn)
上傳時間: 2021-10-21
上傳用戶:kent
該文是 中興通訊公司 CDMA事業(yè)部整理的硬件電路設(shè)計(jì)規(guī)范,在編寫我司自己的電路設(shè)計(jì)規(guī)范中,提供了很大參考和借鑒意義,該文主要包括兩大部分,一部分是原理圖的制圖規(guī)范,一部分是電路設(shè)計(jì)的規(guī)范,其中電路設(shè)計(jì)規(guī)范從電路設(shè)計(jì)(如通用準(zhǔn)則、電源、時鐘、邏輯器件、保護(hù)器件等多個章節(jié)展開)、可靠性設(shè)計(jì)、SI/PI設(shè)計(jì)、系統(tǒng)性設(shè)計(jì)、可生產(chǎn)性設(shè)計(jì)、可測試性等多個方向展開。并最終形成checklist逐條檢驗(yàn)準(zhǔn)則,干貨很多。
標(biāo)簽: 中興 電路設(shè)計(jì)
上傳時間: 2021-11-05
上傳用戶:
引言:產(chǎn)品設(shè)計(jì)越來越趨向小型化,功能多樣化,并對SI,EMC 設(shè)計(jì)要求更為苛刻(如產(chǎn)品需認(rèn)證SISPR16 CALSS B),根據(jù)單板的電源、地的種類、信號密度、板級工作頻率、有特殊布線要求的信號數(shù)量,適當(dāng)增加地平面是PCB 的EMC 設(shè)計(jì)的殺手锏之一。單面板,雙面板已不能夠滿足復(fù)雜PCB 的設(shè)計(jì)要求,本文以四層板舉例,講述四層板的設(shè)置和相關(guān)的一些設(shè)計(jì)技巧,文中的有些觀點(diǎn),建議因?yàn)樗接邢蓿e誤之處在所難免,還望大家不斷批評、指正。
標(biāo)簽: pads
上傳時間: 2021-11-28
上傳用戶:shjgzh
這是一份micron ddr spec僅相關(guān)SI測試工程師測試參考
標(biāo)簽: ddr
上傳時間: 2021-12-31
上傳用戶:
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1