基于MCS-51單片機調頻調相信號發生器 功能:A路能產生2~200HZ/分鐘頻率可調 @ B路能產生同A路相位滯后0~180讀可調 @ 可以鍵盤設定頻率和相位 @ 可以顯示頻率和相位
上傳時間: 2017-05-14
上傳用戶:jeffery
/************************** 0 1 2 3 4 5 6 7 8 9 . CLR + - = CLR ***************************/ 用鍵盤掃描,數碼管顯示實現計算功能,能實現xxx.x任意正數的加減 運算,超過范圍顯0000,功能鍵如上
標簽: CLR
上傳時間: 2013-12-20
上傳用戶:dongqiangqiang
java開發思想 1 :介紹對象 2 :一切都是對象 3 :控制計劃 4 :初始化和清除 5 :隱藏實現 6 :重用類 7 :多態性 8 :接口與內部類 9 :錯誤處理的例外情況 10 :檢測類型 11 :館藏的物體 12 : Java的I / O系統 13 :并發 14 :創建Windows和程序 15 :發現問題 16 :分析與設計
上傳時間: 2017-07-11
上傳用戶:skfreeman
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
標簽:
上傳時間: 2014-08-17
上傳用戶:1159797854
一﹑指標要求:. A: f5 b G A( d8 n (1)設計一個4位十進制的頻率計其測量范圍1Hz~9.999KHz;6 N3 G8 k( U- @ n* A (2)記數過程結束后,保存并顯示結果;
上傳時間: 2014-01-07
上傳用戶:妄想演繹師
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
標簽:
上傳時間: 2014-11-21
上傳用戶:yt1993410
電子基礎類專輯 153冊 2.20G21世紀大學新型參考教材系列 集成電路B 荒井 159頁 2.8M.pdf
標簽:
上傳時間: 2014-05-05
上傳用戶:時代將軍
5V USB扁口接口TP4055鋰離子電池充電接口板ALTIUM設計硬件原理圖+PCB文件,2層B板手設計,大小為33*18mm,,可以做為你的學習設計參考。TP4055 是一款完整的單節鋰離子電池充電器,帶電池正負極反接保護,采用恒定 電流/恒定電壓線性控制。其 SOT 封裝與較少的外部元件數目使得 TP4055 成為便攜式應 用的理想選擇。TP4055 可以適合 USB 電源和適配器電源工作。 由于采用了內部 PMOSFET 架構,加上防倒充電路,所以不需要外部檢測電阻器和 隔離二極管。熱反饋可對充電電流進行自動調節,以便在大功率操作或高環境溫度條件 下對芯片溫度加以限制。充滿電壓固定于 4.2V,而充電電流可通過一個電阻器進行外部 設置。當電池達到 4.2V 之后,充電電流降至設定值 1/10,TP4055 將自動終止充電。 當輸入電壓(交流適配器或 USB 電源)被拿掉時,TP4055 自動進入一個低電流狀 態,電池漏電流在 2uA 以下。TP4055 的其他特點包括充電電流監控器、欠壓閉鎖、自 動再充電和一個用于指示充電結束和輸入電壓接入的狀態引腳。
上傳時間: 2021-11-22
上傳用戶:trh505
BC20-TE-B NB-Iot 評估板評估板原廠原理圖V1.2。完整對應實物裝置。
上傳時間: 2022-06-17
上傳用戶:
本書主要闡述設計射頻與微波功率放大器所需的理論、方法、設計技巧,以及將分析計算與計算機輔助設計相結合的優化設計方法。這些方法提高了設計效率,縮短了設計周期。本書內容覆蓋非線性電路設計方法、非線性主動設備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設計、寬帶功率放大器及通信系統中的功率放大器設計。 本書適合從事射頻與微波動功率放大器設計的工程師、研究人員及高校相關專業的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設計工程師,他曾經任教于澳大利亞Linz大學、新加坡微電子學院、莫斯科通信和信息技術大學。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網絡參數 1.1 傳統的網絡參數 1.2 散射參數 1.3 雙口網絡參數間轉換 1.4 雙口網絡的互相連接 1.5 實際的雙口電路 1.5.1 單元件網絡 1.5.2 π形和T形網絡 1.6 具有公共端口的三口網絡 1.7 傳輸線 參考文獻 第2章 非線性電路設計方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數法 2.2 時域分析 2.3 NewtOn.Raphscm算法 2.4 準線性法 2.5 諧波平衡法 參考文獻 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓撲之間的等效互換 3.3.4 非線性雙極器件模型 參考文獻 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設計 4.4.2 寬帶高功率放大器設計 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導 參考文獻 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網絡 5.3 四口網絡 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻 第6章 功率放大器設計基礎 6.1 主要特性 6.2 增益和穩定性 6.3 穩定電路技術 6.3.1 BJT潛在不穩定的頻域 6.3.2 MOSFET潛在不穩定的頻域 6.3.3 一些穩定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實際外形 參考文獻 第7章 高效率功率放大器設計 7.1 B類過激勵 7.2 F類電路設計 7.3 逆F類 7.4 具有并聯電容的E類 7.5 具有并聯電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設計 7.8 實際的高效率RF和微波功率放大器 參考文獻 第8章 寬帶功率放大器 8.1 Bode—Fan0準則 8.2 具有集中元件的匹配網絡 8.3 使用混合集中和分布元件的匹配網絡 8.4 具有傳輸線的匹配網絡 8.5 有耗匹配網絡 8.6 實際設計一瞥 參考文獻 第9章 通信系統中的功率放大器設計 9.1 Kahn包絡分離和恢復技術 9.2 包絡跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關模式和雙途徑功率放大器 9.6 前饋線性化技術 9.7 預失真線性化技術 9.8 手持機應用的單片cMOS和HBT功率放大器 參考文獻
上傳時間: 2013-04-24
上傳用戶:W51631