河內(nèi)塔問題 #include<stdio.h> #include<stdlib.h> int fun_a(int) void fun_b(int,int,int,int) int main(void) { int n int option printf("題目二:河內(nèi)塔問題\n") printf("請輸入要搬移的圓盤數(shù)目\n") scanf("%d",&n) printf("最少搬移的次數(shù)為%d次\n",fun_a(n)) printf("是否顯示移動過程? 是請輸入1,否則輸入0\n") scanf("%d",&option) if(option==1) { fun_b(n,1,2,3) } system("pause") return 0 } int fun_a(int n) { int sum1=2,sum2=0,i for(i=n i>1 i--) { sum1=sum1*2 } sum2=sum1-1 return sum2 } void fun_b(int n,int left,int mid,int right) { if(n==1) printf("把第%d個盤子從第%d座塔移動到第%d座塔\n",n,left,right) else { fun_b(n-1,left,right,mid) printf("把第%d個盤子從第%d座塔移動到第%d座塔\n",n,left,right) fun_b(n-1,mid,left,right) } }
上傳時間: 2016-12-08
上傳用戶:努力努力再努力
Workflow Studio是一款專為商業(yè)進程管理(BPM)設(shè)計的Delphi VCL框架。通過Workflow Studio你可以輕易地將工作流與BPM功能添加到你的應(yīng)用程序里。這樣能使你或你的最終用戶創(chuàng)建工作流定義并運行工作流。此版本為1.2注冊版,直接使用即可
標簽: Workflow Studio BPM Delphi
上傳時間: 2014-01-23
上傳用戶:wpwpwlxwlx
利用SPI傳輸協(xié)定,調(diào)整MCP4921類比電壓產(chǎn)生器的輸出電壓,使其輸出一個0V到5V的類比鋸齒波電壓輸出
標簽: SPI
上傳時間: 2013-12-26
上傳用戶:diets
此資料是本人購買的株洲D(zhuǎn)SP2812開發(fā)板全套資料,有2812片上各模塊例程與USB1.1程序,可直接在CCS下運行
上傳時間: 2014-01-12
上傳用戶:chfanjiang
手機網(wǎng)絡(luò)紙牌游戲,用戶名:mr 密碼:mrsoft。牌的大小按下列順序排列:A、K、Q、J、10、9、8、7、6、5、4、3、2。 1.出牌 (1)每輪只允許出一張牌。 (2)第一局游戲由得到梅花2的一方首先出牌,并且必須出梅花2。 (3)必須先出與首家相同花色的牌,無相同花色時方可用其它花色代替。 (4)最大方得到該輪的所有分牌,并獲得本輪先出牌的資格。 2.分值計算 紅桃:紅桃為分牌。
標簽: 手機網(wǎng)絡(luò)
上傳時間: 2014-01-19
上傳用戶:笨小孩
演算法是指利用電腦解決問題所需要的具體方法和步驟。也就是說給定初始狀態(tài)或輸入數(shù)據(jù),經(jīng)過電腦程序的有限次運算,能夠得出所要求或期望的終止狀態(tài)或輸出數(shù)據(jù)。本書介紹電腦科學(xué)中重要的演算法及其分析與設(shè)計技術(shù)
標簽: 算法
上傳時間: 2017-06-09
上傳用戶:wys0120
員工管理系統(tǒng) 在一個公司里員工之間都有工作上的聯(lián)系。對方的聯(lián)系方式,部門這些資料的獲取;或是上級對員工資料的更改,工資的調(diào)整,員工對資料的查看,修改。 5.1.1 功能描述 1:管理員能對員工資料進行添加,刪除,修改操作。普通用戶不能進行添加或刪除操作 2:界面要求使用簡便,操作簡單 3:信息要做到保密,不同權(quán)限的用戶操作不同,看到的信息也不一樣 4:對不同的工資段進行高亮標記 §5.2 設(shè)計思想 根據(jù)不同用戶的行為來實現(xiàn)不同的操作 §5.2.1 系統(tǒng)構(gòu)思 不同用戶返回不同的操作,具有不同的權(quán)限 §5.2.2 關(guān)鍵技術(shù)與算法 修改界面與表格的同步更新,直接雙擊表格修改數(shù)據(jù) §5.2.3關(guān)鍵數(shù)據(jù)結(jié)構(gòu) 以下是員工的數(shù)據(jù) workerID int IDENTITY(1,1) , name varchar (20) NULL, sex varchar (10) NULL, age int NULL, position varchar (20) NULL, cellphone varchar (20) NULL, salary int NULL, userl varchar (20) NOT NULL, userp varchar (20) NOT NULL, classify int NOT NULL
標簽: 管理系統(tǒng) 方式
上傳時間: 2017-08-25
上傳用戶:三人用菜
第一節(jié)、samba是干什么的?它有什么用? Samba(SMB是其縮寫) 是一個網(wǎng)絡(luò)服務(wù)器,它是Linux作為本地服務(wù)器最重要的一個服務(wù),用于Linux和Windows共享文件之用;Samba可以用于Windows和 Linux之間的共享文件,也一樣用于Linux和Linux之間的共享文件;不過對于Linux和Linux之間共享文件有更好的網(wǎng)絡(luò)文件系統(tǒng) NFS,NFS也是需要架設(shè)服務(wù)器的; 2、安裝及服務(wù)操作命令 安裝samba程序非常簡單,使用rpm -q samba查看當前系統(tǒng)是否已經(jīng)安裝了samba軟件。 如果沒有那就進入光盤,rpm -ivh *samba*.rpm即可。 仔細說下安裝的包: samba-common-3.0.28-0.el5.8 //samba服務(wù)器和客戶端中的最基本文件 samba-3.0.28-0.el5.8 //samba服務(wù)器核心軟件包 system-config-samba-1.2.39-1.el5 //samba圖形配置界面 samba-client-3.0.28-0.el5.8 //samba客戶端軟件 啟動、暫停和停止服務(wù): /etc/init.d/smb start /etc/init.d/smb stop /etc/init.d/smb restart 或 service smb start service smb stop service smb restart 第二節(jié)、由最簡單的一個例子說起,匿名用戶可讀可寫的實現(xiàn) 第一步: 更改smb.conf 我們來實現(xiàn)一個最簡單的功能,讓所有用戶可以讀寫一個Samba 服務(wù)器共享的一個文件夾;我們要改動一下smb.conf ;首先您要備份一下smb.conf文件; [root@localhost ~]# cd /etc/samba [root@localhost samba]# cp smb.conf smb.conf.bak [root@localhost samba]# vi smb.conf 或geidt smb.conf & 然后我們把下面這段寫入smb.conf中: [global] workgroup = WORKGROUP netbios name = Liukai server string = Liukai's Samba Server security = share [test] path = /opt/test writeable = yes browseable = yes guest ok = yes 注解: [global]這段是全局配置,是必段寫的。其中有如下的幾行; workgroup 就是Windows中顯示的工作組;在這里我設(shè)置的是WORKGROUP (用大寫); netbios name 就是在Windows中顯示出來的計算機名; server string 就是Samba服務(wù)器說明,可以自己來定義;這個不是什么重要的; security 這是驗證和登錄方式,這里我們用了share ;驗證方式有好多種,這是其中一種;另外一種常用的是user的驗證方式;如果用share呢,就是不用設(shè)置用戶和密碼了; [test] 這個在Windows中顯示出來是共享的目錄; path = 可以設(shè)置要共享的目錄放在哪里; writeable 是否可寫,這里我設(shè)置為可寫; browseable 是否可以瀏覽,可以;可以瀏覽意味著,我們在工作組下能看到共享文件夾。如果您不想顯示出來,那就設(shè)置為 browseable=no,guest ok 匿名用戶以guest身份是登錄; 第二步:建立相應(yīng)目錄并授權(quán) [root@localhost ~]# mkdir -p /opt/test [root@localhost ~]# id nobody uid=99(nobody) gid=99(nobody) groups=99(nobody) [root@localhost ~]# chown -R nobody:nobody /opt/test 注釋:關(guān)于授權(quán)nobody,我們先用id命令查看了nobody用戶的信息,發(fā)現(xiàn)他的用戶組也是nobody,我們要以這個為準。有些系統(tǒng)nobody用戶組并非是nobody ; 第三步:啟動服務(wù)器 第四步:訪問Samba 服務(wù)器的共享; 1、在Linux 中您可以用下面的命令來訪問; [root@localhost ~]# smbclient -L //liukai或 smbclient //192.168.0.94/test Password: 注:直接按回車 2、在Windows中,您可以用下面的辦法來訪問; \\liukai 或 \\192.168.0.94 3、說明:如果用了netbiosname,就可以用“\\主機名”來訪問,如果沒用netbiosname,就不能用主機名訪問。 第三節(jié)、簡單的密碼驗證服務(wù)器 修改smb.conf文件: security = user guest account = liukai encrypt passwords = yes smb passwd file = /etc/samba/smbpasswd 然后,建立一個新用戶 useradd liukai passwd liukai 成功后,cat /etc/passwd | mksmbpasswd.sh > /etc/samba/smbpasswd smbpasswd -a liukai 這就成功地添加了一個smb用戶。 重啟服務(wù),使用這個用戶進行登錄即可。
上傳時間: 2015-05-13
上傳用戶:yangkang1192
第1章 緒論 1 1.1 程序設(shè)計語言概述 1 1.1.1 機器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優(yōu)點和缺點 4 1.2.1 C語言的優(yōu)點 4 1.2.2 C語言的缺點 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復(fù)雜度 8 1.3.3 算法的準確性 10 1.3.4 算法的穩(wěn)定性 14 第2章 復(fù)數(shù)運算 18 2.1 復(fù)數(shù)的四則運算 18 2.1.1 [算法1] 復(fù)數(shù)乘法 18 2.1.2 [算法2] 復(fù)數(shù)除法 20 2.1.3 【實例5】 復(fù)數(shù)的四則運算 22 2.2 復(fù)數(shù)的常用函數(shù)運算 23 2.2.1 [算法3] 復(fù)數(shù)的乘冪 23 2.2.2 [算法4] 復(fù)數(shù)的n次方根 25 2.2.3 [算法5] 復(fù)數(shù)指數(shù) 27 2.2.4 [算法6] 復(fù)數(shù)對數(shù) 29 2.2.5 [算法7] 復(fù)數(shù)正弦 30 2.2.6 [算法8] 復(fù)數(shù)余弦 32 2.2.7 【實例6】 復(fù)數(shù)的函數(shù)運算 34 第3章 多項式計算 37 3.1 多項式的表示方法 37 3.1.1 系數(shù)表示法 37 3.1.2 點表示法 38 3.1.3 [算法9] 系數(shù)表示轉(zhuǎn)化為點表示 38 3.1.4 [算法10] 點表示轉(zhuǎn)化為系數(shù)表示 42 3.1.5 【實例7】 系數(shù)表示法與點表示法的轉(zhuǎn)化 46 3.2 多項式運算 47 3.2.1 [算法11] 復(fù)系數(shù)多項式相乘 47 3.2.2 [算法12] 實系數(shù)多項式相乘 50 3.2.3 [算法13] 復(fù)系數(shù)多項式相除 52 3.2.4 [算法14] 實系數(shù)多項式相除 54 3.2.5 【實例8】 復(fù)系數(shù)多項式的乘除法 56 3.2.6 【實例9】 實系數(shù)多項式的乘除法 57 3.3 多項式的求值 59 3.3.1 [算法15] 一元多項式求值 59 3.3.2 [算法16] 一元多項式多組求值 60 3.3.3 [算法17] 二元多項式求值 63 3.3.4 【實例10】 一元多項式求值 65 3.3.5 【實例11】 二元多項式求值 66 第4章 矩陣計算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實矩陣相乘 68 4.1.2 [算法19] 復(fù)矩陣相乘 70 4.1.3 【實例12】 實矩陣與復(fù)矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復(fù)矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實例14】 驗證矩陣求逆算法 97 4.3.5 【實例15】 驗證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實矩陣的QR分解 112 4.4.5 [算法30] 對稱實矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實例16】 對一般實矩陣進行QR分解 126 4.4.8 【實例17】 對稱矩陣的相似變換 127 4.4.9 【實例18】 一般實矩陣相似變換 129 4.5 矩陣特征值的計算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關(guān)法 147 4.5.5 【實例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數(shù)方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復(fù)系數(shù)方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實系數(shù)方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復(fù)系數(shù)方程組的全選主元高斯-約當消去法 163 5.1.4 [算法39] 求解實系數(shù)方程組的全選主元高斯-約當消去法 168 5.1.5 [算法40] 求解大型稀疏系數(shù)矩陣方程組的高斯-約當消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實例21】 解線性實系數(shù)方程組 179 5.1.9 【實例22】 解線性復(fù)系數(shù)方程組 180 5.1.10 【實例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實例24】 求解對稱正定方程組 191 5.2.5 【實例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態(tài)方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實例26】 解病態(tài)方程組 214 5.3.8 【實例27】 用迭代法解方程組 215 5.3.9 【實例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實根的初始近似值或根的所在區(qū)間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實例29】 用對分法求非線性方程組的實根 232 6.2.6 【實例30】 用牛頓法求非線性方程組的實根 233 6.2.7 【實例31】 用插值法求非線性方程組的實根 235 6.2.8 【實例32】 用埃特金迭代法求非線性方程組的實根 237 6.3 求實系數(shù)多項式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實例33】 用QR方法求解多項式的全部根 240 6.4 求非線性方程組一組實根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實例34】 用梯度法計算非線性方程組的一組實根 250 6.4.4 【實例35】 用擬牛頓法計算非線性方程組的一組實根 252 第7章 代數(shù)插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區(qū)間插值 259 7.1.4 【實例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數(shù)插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數(shù)插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數(shù)插值 296 7.5.4 【實例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實例41】 驗證連分式插值的函數(shù) 308 第8章 數(shù)值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應(yīng)梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實例42】 變步長積分法進行一重積分 325 8.1.7 【實例43】 變步長辛卜生積分法進行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應(yīng)高斯求積方法 337 8.2.6 【實例44】 有限區(qū)間高斯求積法 342 8.2.7 【實例45】 半無限區(qū)間內(nèi)高斯求積法 343 8.2.8 【實例46】 無限區(qū)間內(nèi)高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計算一重積分的連分式方法 346 8.3.2 [算法83] 計算二重積分的連分式方法 350 8.3.3 【實例47】 連分式法進行一重積分 354 8.3.4 【實例48】 連分式法進行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進行二重積分 358 8.4.3 【實例49】 一重積分的蒙特卡洛法 360 8.4.4 【實例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進的歐拉方法 370 9.1.4 【實例51】 歐拉方法求常微分方程數(shù)值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當姆斯預(yù)報校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區(qū)間積分的雙邊法 399 9.3.4 【實例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實例54】 一元多項式擬合 417 10.2 矩形區(qū)域曲面擬合 419 10.2.1 [算法97] 矩形區(qū)域最小二乘曲面擬合 419 10.2.2 【實例55】 二元多項式擬合 428 第11章 特殊函數(shù) 430 11.1 連分式級數(shù)和指數(shù)積分 430 11.1.1 [算法98] 連分式級數(shù)求值 430 11.1.2 [算法99] 指數(shù)積分 433 11.1.3 【實例56】 連分式級數(shù)求值 436 11.1.4 【實例57】 指數(shù)積分求值 438 11.2 伽馬函數(shù) 439 11.2.1 [算法100] 伽馬函數(shù) 439 11.2.2 [算法101] 貝塔函數(shù) 441 11.2.3 [算法102] 階乘 442 11.2.4 【實例58】 伽馬函數(shù)和貝塔函數(shù)求值 443 11.2.5 【實例59】 階乘求值 444 11.3 不完全伽馬函數(shù) 445 11.3.1 [算法103] 不完全伽馬函數(shù) 445 11.3.2 [算法104] 誤差函數(shù) 448 11.3.3 [算法105] 卡方分布函數(shù) 450 11.3.4 【實例60】 不完全伽馬函數(shù)求值 451 11.3.5 【實例61】 誤差函數(shù)求值 452 11.3.6 【實例62】 卡方分布函數(shù)求值 453 11.4 不完全貝塔函數(shù) 454 11.4.1 [算法106] 不完全貝塔函數(shù) 454 11.4.2 [算法107] 學(xué)生分布函數(shù) 457 11.4.3 [算法108] 累積二項式分布函數(shù) 458 11.4.4 【實例63】 不完全貝塔函數(shù)求值 459 11.5 貝塞爾函數(shù) 461 11.5.1 [算法109] 第一類整數(shù)階貝塞爾函數(shù) 461 11.5.2 [算法110] 第二類整數(shù)階貝塞爾函數(shù) 466 11.5.3 [算法111] 變型第一類整數(shù)階貝塞爾函數(shù) 469 11.5.4 [算法112] 變型第二類整數(shù)階貝塞爾函數(shù) 473 11.5.5 【實例64】 貝塞爾函數(shù)求值 476 11.5.6 【實例65】 變型貝塞爾函數(shù)求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實例66】 第一類勒讓德橢圓函數(shù)積分求值 490 11.6.6 【實例67】 第二類勒讓德橢圓函數(shù)積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點所在的區(qū)間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導(dǎo)數(shù)的Brent方法 506 12.1.5 【實例68】 使用黃金分割搜索法求極值 511 12.1.6 【實例69】 使用Brent法求極值 513 12.1.7 【實例70】 使用帶導(dǎo)數(shù)的Brent法求極值 515 12.2 多元函數(shù)求極值 517 12.2.1 [算法121] 不需要導(dǎo)數(shù)的一維搜索 517 12.2.2 [算法122] 需要導(dǎo)數(shù)的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準牛頓法 531 12.2.6 【實例71】 驗證不使用導(dǎo)數(shù)的一維搜索 536 12.2.7 【實例72】 用Powell算法求極值 537 12.2.8 【實例73】 用共軛梯度法求極值 539 12.2.9 【實例74】 用準牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規(guī)劃問題的單純形法 556 12.3.4 【實例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實例77】 求解線性規(guī)劃問題 571 第13章 隨機數(shù)產(chǎn)生與統(tǒng)計描述 574 13.1 均勻分布隨機序列 574 13.1.1 [算法129] 產(chǎn)生0到1之間均勻分布的一個隨機數(shù) 574 13.1.2 [算法130] 產(chǎn)生0到1之間均勻分布的隨機數(shù)序列 576 13.1.3 [算法131] 產(chǎn)生任意區(qū)間內(nèi)均勻分布的一個隨機整數(shù) 577 13.1.4 [算法132] 產(chǎn)生任意區(qū)間內(nèi)均勻分布的隨機整數(shù)序列 578 13.1.5 【實例78】 產(chǎn)生0到1之間均勻分布的隨機數(shù)序列 580 13.1.6 【實例79】 產(chǎn)生任意區(qū)間內(nèi)均勻分布的隨機整數(shù)序列 581 13.2 正態(tài)分布隨機序列 582 13.2.1 [算法133] 產(chǎn)生任意均值與方差的正態(tài)分布的一個隨機數(shù) 582 13.2.2 [算法134] 產(chǎn)生任意均值與方差的正態(tài)分布的隨機數(shù)序列 585 13.2.3 【實例80】 產(chǎn)生任意均值與方差的正態(tài)分布的一個隨機數(shù) 587 13.2.4 【實例81】 產(chǎn)生任意均值與方差的正態(tài)分布的隨機數(shù)序列 588 13.3 統(tǒng)計描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗 591 13.3.3 [算法137] 方差不同時的t分布檢驗 594 13.3.4 [算法138] 方差的F檢驗 596 13.3.5 [算法139] 卡方檢驗 599 13.3.6 【實例82】 計算隨機樣本的矩 601 13.3.7 【實例83】 t分布檢驗 602 13.3.8 【實例84】 F分布檢驗 605 13.3.9 【實例85】 檢驗卡方檢驗的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數(shù)組的二分查找 609 14.1.2 [算法141] 無序數(shù)組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數(shù)組查找第M小的元素 613 14.1.4 【實例86】 基本查找 615 14.2 結(jié)構(gòu)體和磁盤文件的查找 617 14.2.1 [算法143] 無序結(jié)構(gòu)體數(shù)組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實例87】 結(jié)構(gòu)體數(shù)組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數(shù) 622 14.3.2 [算法146] 哈希函數(shù) 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實例88】 構(gòu)造哈希表并進行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計數(shù)排序 651 15.4.2 [算法157] 基數(shù)排序 653 15.4.3 【實例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實例93】 二路歸并排序 660 第16章 數(shù)學(xué)變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復(fù)數(shù)據(jù)快速傅里葉變換 662 16.1.2 [算法160] 復(fù)數(shù)據(jù)快速傅里葉逆變換 666 16.1.3 [算法161] 實數(shù)據(jù)快速傅里葉變換 669 16.1.4 【實例94】 驗證傅里葉變換的函數(shù) 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實例95】 驗證沃爾什變換和哈達瑪?shù)暮瘮?shù) 684 16.2.5 【實例96】 驗證離散余弦變換的函數(shù) 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實例97】 驗證五點三次平滑 692 16.3.4 【實例98】 驗證α-β-γ濾波算法 693
標簽: C 算法 附件 源代碼
上傳時間: 2015-06-29
上傳用戶:cbsdukaf
共軛梯度法為求解線性方程組而提出。后來,人們把這種方法用于求解無約束最優(yōu)化問題, 使之成為一種重要的最優(yōu)化方法。 共軛梯度法的基本思想是把共軛性與最速下降方法相結(jié)合, 利用已知點處的梯度構(gòu)造一組共 軛方向, 并沿這組方向進行搜索, 求出目標函數(shù)的極小點。 根據(jù)共軛方向的基本性質(zhì), 這種 方法具有二次終止性。 在各種優(yōu)化算法中, 共軛梯度法是非常重要的一種。 其優(yōu)點是所需存 儲量小,具有步收斂性,穩(wěn)定性高,而且不需要任何外來參數(shù)。 共軛方向 無約束最優(yōu)化方法的核心問題是選擇搜索方向 . 在本次實驗中 , 我們運用基于共軛方向的一種 算法 — 共軛梯度法 三.算法流程圖: 四.實驗結(jié)果: (1). 實驗函數(shù) f=(3*x1-cos(x2*x3)-1/2)^2+(x1^2-81*(x2+0.1)+sin(x3)+1.06)^2+(exp(-x1*x2)+20*x3+ 1/3*(10*3.14159-3))^2; 給定初始點 (0,0,0) , k=1 ,最 大迭代次數(shù) n ? ? d 確定搜索方向 進 退 法 確 定 搜 索 區(qū) 間 分割法確定最 優(yōu)步長
上傳時間: 2016-05-08
上傳用戶:saren11
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1