基于ROK101007型藍牙模塊和TMS320C54x型DSP的家用醫療保健智能機器人設計摘要:未來社會將會越來越重視 醫療保健服務 ,提 出一種新型智能機 器人 ,就其在數字化 家庭醫療 保健方面的應用進行模型設計 ,并將藍牙技術應用在智能機器人與醫療儀器和控制 PC的通信 中。 關 鍵 詞 :數字化家庭 ;智能機器人 ;侍感器;藍牙技術;醫療保健 ;ROKl0l007;TMS320C54x 中 圖分 類號 :R197.39 文獻標 識碼 :A 文章編 號 :1006—6977(2006)02—0數字化家庭是未來智能小區系統的基本單元 。 所謂“數字化家庭”就是基于家庭內部網絡提供覆蓋 整個家庭的智能化服務 ,包括數據通信、家庭娛樂 和 信息家電控制功能。 數字化家庭設計 的一項主要內容是通信功能的 實現 ,包括家庭 與外界的通信及家庭 內部相關設施 之間的通信。從現在的發展來看,外部的通信主要 通過寬帶接入 Internet,而家庭 內部的通信,筆者采 用 目前 比較具有競爭力的藍牙 (Bluetooth)無線接入 技術。 傳統的數字化家庭采用 PC進行總體控制 ,缺 乏人性化。筆者根據人工情感的思想設計一種配備 多種外部傳感器的智能機器人 ,將此智能機器人視 作家庭成員,通過它實現對數字化家庭的控制。 本文主要就智能機器人在數字化家庭醫療保健 方面的應用進行模型設計 ,在智能機器人與醫療儀 器和控制 PC的通信采用藍牙技術 。整個系統 的成 本較低 ,功能較為全面,擴展應用非常廣闊,具有極 大的市場潛力。 2 智能機器 人的總體設計 2.1 智能機器人的多傳感器 系統 機器人智能技術 中最為重要 的相關領域是機器 人 的多感覺系統和多傳感信息 的集成與融合【l1,統 稱為智能系統的硬件和軟件部分 。視覺 、聽覺、力覺、 觸覺等外部傳感器和機器人各關節的內部傳感器信 息融合使用 ,可使機器人完成實時圖像傳輸、語音識 別 、景物辨別、定位 、自動避障、目標物探測等重要功 能;給機器人加上相關的醫療模塊(CCD、CAMERA、 立體麥克風 、圖像采集卡等 )和專用醫療傳感器部 件 ,再加上 醫療專家系統就可以實現醫療保健和遠 程 醫療監護功能。智能機器人的多傳感器系統框圖 如 圖 1
上傳時間: 2022-02-15
上傳用戶:bluedrops
能源短缺和環境惡化是人類共同面臨的挑戰。開發新型清潔能源是解決能源短缺和環境惡化的捷徑,但是太陽能能源不連續和不穩定的缺點影響其單獨使用的效果。為了解決這個問題,可以選擇使用多種性質互補的能源聯合供電,相互彌補彼此的不足,以達到連續穩定的電能輸出。基于雙輸入直流變換器(Multipk-Input Converter,MC)的光電互補系統相對于風光互補系統而言,在太陽能功率充足時,可以選擇將多余的能量進行并網,省去了蕃電池等儲能設備,也可大大節約成本,簡化控制:而且電網是全天候的,比純新能源聯合系統更加可靠。因此本文將對光電互補系統,研究其拓撲、能量管理和系統參數設計等等在隔離應用的中小功率場合,推挽變換器控制方便,結構簡單,應用廣泛傳統的多輸入推挽變換器結構復雜,成本高。通過分析MIC的生成方法,利用脈沖電壓源 Pulsating Voltage Source Ce,PⅤSC或者脈沖電流源(Pulsating Curren Source Cell,PCSC)中聯或者并聯構成簡單實用的一族多輸入推挽變換器,詳細分析了BUCK型PVSC串聯構成的雙輸入推挽變換器的小信號模型和控制方式,為了能夠提供交流輸出,本文還詳細分析了半橋逆變電路的控制方式,并推導出其數學控制模型通過分析系統的工作模式、能量管理策略和不同控制方式對系統的影響,闡叨基于雙輸入推挽變換器的光電互補系統的工作原理。并對系統軟件涉及到的太陽能最大功率跟蹤、光電互補控制和逆變控制等算法進行重點研究功率電路參數設計合理與否,直接影響著系統的性能和指標,其中推挽變壓器和濾波器的參數設計尤為重要,為此專門給出了硬件參數設計步驟;然后,根據軟件算法,設計了控制軟件流程圖來更清晰的表達軟件控制的思想軟件參數是影響系統魯棒性和快速性的另一個關鍵因素,在硬件設計的基礎上,對軟件參數進行優化設計,并利用 Simulink軟件對設計參數進行仿真分析和修正。然后采用TMS320F2809作為控制芯片,搭建了實驗原理樣機,并進行了相關驗證實驗
標簽: 推挽變換器
上傳時間: 2022-03-16
上傳用戶:
USB音頻方案,USB聲卡方案1. 描述ATE1133是一顆包含音頻編解碼器、HIFI級單麥克風輸入和立體聲耳機輸出解決方案。內部集成多個模塊,包括高速&全速USB Host/Device收發器(PHY),ARM??Cortex?-M4?32-bit?MCU內核主頻96MHZ,16bit ADC采樣率:48、96KHZ、16bit DAC采樣率:48、96KHZ,支持標準安卓耳機線控按鍵控制,支持美標CTIA帶耳機插拔檢測。它非常適用于USB C型桌面拓展塢、數據音頻HUB、視頻會議、Type-c耳機、C型音頻轉接頭、USB話務耳機、USB車載AUX音頻線等應用。此外還支持上位機Windows PC端軟件界面在線調試仿真和更新片內flash閃存。2.特點·符合USB 2.0全速運行·符合USB AUDIO & HID設備類規范·支持Headset模式·支持Microphone模式·支持Speaker模式·支持硬件設置三種模式切換·支持左右聲道平衡·麥克風Audio-ADC參數: 采樣率:48、96KHZ 位寬:16Bit THD+N=0.005% SNR≥98 Bias電壓:3V·立體聲耳機輸出Audio-DAC參數: 采樣率:48、96KHZ 位寬:16Bit THD+N=0.003%(RL=32Ω) RL輸出擺幅=1.6V 直驅16/32Ω耳機,最大功率35mW·內置低功耗ARM核心,全速運行功耗=3.3V@18ma,功耗0.06mW·支持線控耳機模式:上一曲、下一曲、播放/暫停、點按音量加減、長按音量連續加減·芯片單電源供電:3.3~5V-MAX·32針腳QFN32 4X4 封裝
上傳時間: 2022-03-22
上傳用戶:shjgzh
隨著現代電子和通信技術的飛躍發展,信息交流越發頻繁,各種各樣電子電氣設備已大大影響到各個領域的企業及家庭。在微波通信領域,隨著微波技術的發展,功分器作為一個重要的器件,其性能對系統有不可忽略的影響,因此其研制技術也需要不斷的改進本文首先對功分器的基本理論、性能指標作了簡單介紹,然后闡述了一個具體的一分六功分器的設計思路和過程,并給出了設計的電路結構、仿真結果、最后制作了版圖。本文還用到了HFSS,在功分器的具體電路結構建模、仿真優化和版圖的生成上如何應用,在設計過程中文中都作出了相應的說明功分器是將輸入信號功率分成相等或不相等的幾路輸出的一種多端口網絡它廣泛應用于雷達系統及天線的饋電系統中。功分器按照其功率分配比有相應的設計公式可較為容易的實現。等分功分器按其分配支路的數量可分為2n+1(奇)等分和2n(偶)等分兩類。后者的設計方法相對簡單,只需要在最基本的一分功分器上再等分即可。對于奇等分功分器,通常慣用的設計方法是先2(n+1)等分,然后其中一路加負載,這種設計方法雖然簡便,可是有著結構受限,接負載端容易影響其它端口相幅的一致性,并且插損較大隨著無線通信技術的快速發展,各種通訊系統的載波頻率不斷提高,小型化低功耗的高頻電子器件及電路設計使微帶技術發揮了優勢。在射頻電路和測量系統如混頻器、功率放大器電路中的功率分配與耦合元件的性能將影響整個系統的通訊質量在通訊設備中,功分器有著非常廣泛的應用,例如在相控陣雷達系統中,要將發射機功率分配到各個發射單元中去。實際中常需要將某一功率按一定比例分配到各分支電路中。功分器種類繁多,常見的功分器有變壓器式、微帶式或帶狀線式、波導式和鐵氧體式,它們各有優缺點和使用場合。
標簽: hfss
上傳時間: 2022-04-05
上傳用戶:bluedrops
常用4000系列標準數字電路的中文名稱資料 型號 器件名稱 廠牌 備注 CD4000 雙3輸入端或非門+單非門 TI CD4001 四2輸入端或非門 HIT/NSC/TI/GOL CD4002 雙4輸入端或非門 NSC CD4006 18位串入/串出移位寄存器 NSC CD4007 雙互補對加反相器 NSC CD4008 4位超前進位全加器 NSC CD4009 六反相緩沖/變換器 NSC CD4010 六同相緩沖/變換器 NSC CD4011 四2輸入端與非門 HIT/TI CD4012 雙4輸入端與非門 NSC CD4013 雙主-從D型觸發器 FSC/NSC/TOS CD4014 8位串入/并入-串出移位寄存器 NSC CD4015 雙4位串入/并出移位寄存器 TI CD4016 四傳輸門 FSC/TI CD4017 十進制計數/分配器 FSC/TI/MOT CD4018 可預制1/N計數器 NSC/MOT CD4019 四與或選擇器 PHI CD4020 14級串行二進制計數/分頻器 FSC CD4021 08位串入/并入-串出移位寄存器 PHI/NSC CD4022 八進制計數/分配器 NSC/MOT CD4023 三3輸入端與非門 NSC/MOT/TI CD4024 7級二進制串行計數/分頻器 NSC/MOT/TI CD4025 三3輸入端或非門 NSC/MOT/TI CD4026 十進制計數/7段譯碼器 NSC/MOT/TI CD4027 雙J-K觸發器 NSC/MOT/TI CD4028 BCD碼十進制譯碼器 NSC/MOT/TI CD4029 可預置可逆計數器 NSC/MOT/TI CD4030 四異或門 NSC/MOT/TI/GOL CD4031 64位串入/串出移位存儲器 NSC/MOT/TI CD4032 三串行加法器 NSC/TI CD4033 十進制計數/7段譯碼器 NSC/TI CD4034 8位通用總線寄存器 NSC/MOT/TI CD4035 4位并入/串入-并出/串出移位寄存 NSC/MOT/TI CD4038 三串行加法器 NSC/TI CD4040 12級二進制串行計數/分頻器 NSC/MOT/TI CD4041 四同相/反相緩沖器 NSC/MOT/TI CD4042 四鎖存D型觸發器 NSC/MOT/TI CD4043 4三態R-S鎖存觸發器("1"觸發) NSC/MOT/TI CD4044 四三態R-S鎖存觸發器("0"觸發) NSC/MOT/TI CD4046 鎖相環 NSC/MOT/TI/PHI CD4047 無穩態/單穩態多諧振蕩器 NSC/MOT/TI CD4048 4輸入端可擴展多功能門 NSC/HIT/TI CD4049 六反相緩沖/變換器 NSC/HIT/TI CD4050 六同相緩沖/變換器 NSC/MOT/TI CD4051 八選一模擬開關 NSC/MOT/TI
上傳時間: 2022-05-05
上傳用戶:
是一個集成的熱電偶測量系統,基于AD7124-4/AD7124-8低功耗、低噪聲、24位-型模數轉換器(ADC),針對高精度測量應用而優化。使用該系統的熱電偶測量在?50°C至+200°C的測量溫度范圍內具有±1°C的整體系統精度。系統的典型無噪聲碼分辨率約為15位。AD7124-4可配置為4個差分或7個偽差分輸入通道,而AD7124-8可配置為8個差分或15個偽差分輸入通道。片內低噪聲可編程增益陣列(PGA)確保ADC中可直接輸入小信號。
標簽: adc
上傳時間: 2022-05-25
上傳用戶:
4路搶答器原理圖---國防工業大學 工作原理 :搶答器由74LS148、74LS279、74LS48組成,LED顯示器 開始時,當支持人按鈕還未按是,CLR為0,所以輸出Q1~Q4為0;放光二極管全為滅的,當主持人按鈕按下時CLR為1,可以輸入,誰先搶答,相應的誰的燈亮,利用74LS279和74LS148輸出的是cp等于0,鎖存其他的,不能使其他的輸出。擴展資料:利用51單片機建立四路搶答器。單片機,當然不只是51,51單片機是一種稍通用型的單片機,通過I/O口的定義,可以實現多種控制功能。搶答器,原理:如果為四路,當其中任一路控下后,其他幾路即失效,結果為第一次按下的,可以用數碼管或是LED燈來顯示,當然這里只是講原理與編程,具體可以根據搶答器路數及顯示方式更改程序即可。這個聲音報警數字顯示8路搶答器電路,主開關由主持人控制。按圖安裝即可你可接4路。這個4路搶答器的原理圖。希望覺得有用。
標簽: 4路搶答器
上傳時間: 2022-06-06
上傳用戶:jason_vip1
ADS1256 是TI(Texas I nstruments )公司推出的一款低噪聲高分辨率的24 位Si gma - Delta("- #)模數轉換器(ADC)。"- #ADC 與傳統的逐次逼近型和積分型ADC 相比有轉換誤差小而價格低廉的優點,但由于受帶寬和有效采樣率的限制,"- #ADC 不適用于高頻數據采集的場合。該款ADS1256 可適合于采集最高頻率只有幾千赫茲的模擬數據的系統中,數據輸出速率最高可為30K 采樣點/秒(SPS),有完善的自校正和系統校正系統, SPI 串行數據傳輸接口。本文結合筆者自己的應用經驗,對該ADC 的基本原理以及應用做簡要介紹。ADs1256 的總體電氣特性下面介紹在使用ADs1256 的過程中要注意的一些電氣方面的具體參數:模擬電源(AVDD )輸入范圍+ 4 . 75V !+ 5 .25V,使用的典型值為+ 5 .00V;數字電源(DVDD )輸入范圍+ 1 . 8V !+ 3 .6V,使用的典型值+ 3 .3V;參考電壓值(VREF= VREFP- VREFN)的范圍+ 0 .5V!+ 2 .6V,使用的典型值為+ 2 .5V;耗散功率最大為57mW;每個模擬輸入端(AI N0 !7 和AI NC M)相對于模擬地(AGND)的絕對電壓值范圍在輸入緩沖器(BUFFER)關閉的時候為AGND-0 .1 !AVDD+ 0 . 1 ,在輸入緩沖器打開的時候為AGND !AVDD-2 .0 ;滿刻度差分模擬輸入電壓值(VI N = AI NP -AI NN)為+ /-(2VREF/PGA);數字輸入邏輯高電平范圍0 .8DVDD!5 .25V(除D0 !D3 的輸入點平不可超過DVDD 外),邏輯低點平范圍DGND!0 .2DVDD;數字輸出邏輯高電平下限為0 .8DVDD,邏輯低電平上限為0 .2DVDD,輸出電流典型值為5mA;主時鐘頻率由外部晶體振蕩器提供給XTAL1和XTAL2 時,要求范圍為2 M!10 MHz ,僅由CLKI N 輸入提供時,范圍為0 .1 M!10 MHz 。
上傳時間: 2022-06-10
上傳用戶:
超聲波電源廣泛應用于超聲波加工、診斷、清洗等領域,其負載超聲波換能器是一種將超音頻的電能轉變為機械振動的器件。由于超聲換能器是一種容性負載,因此換能器與發生器之間需要進行阻抗匹配才能工作在最佳狀態。串聯匹配能夠有效濾除開關型電源輸出方波存在的高次諧波成分,因此應用較為廣泛。但是環境溫度或元件老化等原因會導致換能器的諧振頻率發生漂移,使諧振系統失諧。傳統的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時換能器內部動態支路工作在非諧振狀態,導致換能器功率損耗和發熱,致使輸出能量大幅度下降甚至停振,在實際應用中受到限制。所以,在跟蹤諧振點調節逆變器開關頻率的同時應改變匹配電感才能使諧振系統工作在最高效能狀態。針對按固定諧振點匹配超聲波換能器電感參數存在的缺點,本文應用耦合振蕩法對換能器的匹配電感和耦合頻率之間的關系建立數學模型,證實了匹配電感隨諧振頻率變化的規律。給出利用這一模型與耦合工作頻率之間的關系動態選擇換能器匹配電感的方法。經過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調節電抗值。并給出了實現這一方案的電路原理和控制方法。最后本文以DSPTMS320F2812為核心設計出實現這一原理的超聲波逆變電源。實驗結果表明基于磁通控制的可控電抗器可以實現電抗值隨電抗控制度線性無級可調,由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復合控制策略,穩態時,換能器工作在DPLL鎖定頻率上;動態時,逐步修改匹配電抗大小,搜索輸出電流的最大值,再結合DPLL鎖定該頻率。配合PS-PWM可實現功率連續可調。該超聲波換能系統能夠有效的跟隨最大電流輸出頻率,即使頻率發生漂移系統仍能保持工作在最佳狀態,具有實際應用價值。
上傳時間: 2022-06-18
上傳用戶:
作為模擬與數字電路的接口電路的關鍵部分,模數轉換器(ADC)現代通信、需達、盧納以及眾多消費電子產品中都占據極其重要的地位。隨著科技的迅猛發展,對模數轉換器的性能,特別是速度上的要求越來越高,ADC的性能好壞甚至已經成為決定設備性能的關鍵因素。本文以超高速ADC作為設計的目標,采用了Flash型結構作為研究的方向,并且從ADC的速度和失調電壓消除技術入手進行了重點研究。本文采用了種新穎的消除失調電壓的技術-chopping技術,該技術主要是依靠 組隨機數產生器所產生的高速隨機數序列來隨機快速置換比較器輸入端,從而使得失調電壓近似平均為零,本文設計了種高速隨機數產生器,可以產生速率達到1GHz的隨機數序列。由于比較器部分是影響整個ADC速度的關鍵因素,因此在設計中對于比較器部分逃行了重點優化設計。另外還在數字編碼電路中加入了糾錯設計。通過電路仿真,所設計的ADC可達到1GHz的采樣速率,最大積分非線性和微分非線性分別為0.42LSB和0.49LSB,當輸入信號頻率為16.6MHz時,無雜波動態范圍(SFDR)達到41dB,當加入50mV失調電壓時,chopping技術可以將SFDR增加3dB左右。本設計采用了和艦0.18um CMOS混合信號工藝,完成了主要模塊版圖的設計工作。關鍵詞 Flash型 ADC;失調電壓消除技術:chopping技術
上傳時間: 2022-06-19
上傳用戶:d1997wayne