本會議將允許與會者親自嘗試使用面向智能器件的i.MX 6 SABRE 板卡,包括查看Linux照片、演示、基準測試和性能信息。我們還將通過基準測試及其他演示應用介紹使用i.MX 6系列的Android™產品。
上傳時間: 2013-10-13
上傳用戶:gxmm
LVDS(低壓差分信號)標準ANSI/TIA /E IA26442A22001廣泛應用于許多接口器件和一些ASIC及FPGA中。文中探討了LVDS的特點及其PCB (印制電路板)設計,糾正了某些錯誤認識。應用傳輸線理論分析了單線阻抗、雙線阻抗及LVDS差分阻抗計算方法,給出了計算單線阻抗和差分阻抗的公式,通過實際計算說明了差分阻抗與單線阻抗的區別,并給出了PCB布線時的幾點建議。關鍵詞: LVDS, 阻抗分析, 阻抗計算, PCB設計 LVDS (低壓差分信號)是高速、低電壓、低功率、低噪聲通用I/O接口標準,其低壓擺幅和差分電流輸出模式使EM I (電磁干擾)大大降低。由于信號輸出邊緣變化很快,其信號通路表現為傳輸線特性。因此,在用含有LVDS接口的Xilinx或Altera等公司的FP2GA及其它器件進行PCB (印制電路板)設計時,超高速PCB設計和差分信號理論就顯得特別重要。
上傳時間: 2013-10-31
上傳用戶:adada
《計算機算法基礎》關于選擇問題算法:找第k小元素,時間復雜度為O(n);
上傳時間: 2013-12-31
上傳用戶:天涯
if (pfile() == 0) unlink(inname) else fprintf(stderr, "%s: I/O Error -- File unchanged\n", inname) fclose(outfile) fclose(infile) } exit(0)
標簽: unchanged fprintf inname unlink
上傳時間: 2015-03-12
上傳用戶:l254587896
盡量朝“單片”方向設計硬件系統。系統器件越多,器件之間相互干擾也越強,功耗也增大,也不可避免地降低了系統的穩定性。隨著單片機片內集成的功能越來越強,真正的片上系統SoC已經可以實現,如ST公司新近推出的μPSD32××系列產品在一塊芯片上集成了80C32核、大容量FLASH存儲器、SRAM、A/D、I/O、兩個串口、看門狗、上電復位電路等等。
上傳時間: 2014-12-04
上傳用戶:asasasas
系統資源(r1…rm),共有m類,每類數目為r1…rm。隨機產生進程Pi(id,s(j,k),t),0
上傳時間: 2014-01-27
上傳用戶:天誠24
實現聚類K均值算法: K均值算法:給定類的個數K,將n個對象分到K個類中去,使得類內對象之間的相似性最大,而類之間的相似性最小。 缺點:產生類的大小相差不會很大,對于臟數據很敏感。 改進的算法:k—medoids 方法。這兒選取一個對象叫做mediod來代替上面的中心 的作用,這樣的一個medoid就標識了這個類。步驟: 1,任意選取K個對象作為medoids(O1,O2,…Oi…Ok)。 以下是循環的: 2,將余下的對象分到各個類中去(根據與medoid最相近的原則); 3,對于每個類(Oi)中,順序選取一個Or,計算用Or代替Oi后的消耗—E(Or)。選擇E最小的那個Or來代替Oi。這樣K個medoids就改變了,下面就再轉到2。 4,這樣循環直到K個medoids固定下來。 這種算法對于臟數據和異常數據不敏感,但計算量顯然要比K均值要大,一般只適合小數據量。
上傳時間: 2015-04-03
上傳用戶:sardinescn
求解網絡中的最短路徑。假設某個計算機網絡有n個站點,依次編號為1,2,…,n;有的站點之間有直接的線路連接(即這兩個站點之間沒有其它站點),有的站點之間沒有直接的線路連接。如果用三元組(i,j,f)來表示該網絡中的站點I和站點j之間有直接的線路連接且它們之間的距離為f 當已知該網絡各站點之間的直接連接情況由m個三元組(i1,j1,f1),(i2,j2,f2),…,(im,jm,fm)確定時,要求計算出對于網絡中任意一個站點g(1≤g≤n)到其余各站點的最短距離。
上傳時間: 2013-12-27
上傳用戶:asdkin
.數據結構 假設有M個進程N類資源,則有如下數據結構: MAX[M*N] M個進程對N類資源的最大需求量 AVAILABLE[N] 系統可用資源數 ALLOCATION[M*N] M個進程已經得到N類資源的資源量 NEED[M*N] M個進程還需要N類資源的資源量 2.銀行家算法 設進程I提出請求Request[N],則銀行家算法按如下規則進行判斷。 (1)如果Request[N]<=NEED[I,N],則轉(2);否則,出錯。 (2)如果Request[N]<=AVAILABLE,則轉(3);否則,出錯。 (3)系統試探分配資源,修改相關數據: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST NEED=NEED-REQUEST (4)系統執行安全性檢查,如安全,則分配成立;否則試探險性分配作廢,系統恢復原狀,進程等待。 3.安全性檢查 (1)設置兩個工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)從進程集合中找到一個滿足下述條件的進程, FINISH[i]=FALSE NEED<=WORK 如找到,執行(3);否則,執行(4) (3)設進程獲得資源,可順利執行,直至完成,從而釋放資源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的進程Finish[M]=true,則表示安全;否則系統不安全。
上傳時間: 2014-01-05
上傳用戶:moshushi0009
數據結構 假設有M個進程N類資源,則有如下數據結構: MAX[M*N] M個進程對N類資源的最大需求量 AVAILABLE[N] 系統可用資源數 ALLOCATION[M*N] M個進程已經得到N類資源的資源量 NEED[M*N] M個進程還需要N類資源的資源量 2.銀行家算法 設進程I提出請求Request[N],則銀行家算法按如下規則進行判斷。 (1)如果Request[N]<=NEED[I,N],則轉(2);否則,出錯。 (2)如果Request[N]<=AVAILABLE,則轉(3);否則,出錯。 (3)系統試探分配資源,修改相關數據: AVAILABLE=AVAILABLE-REQUEST ALLOCATION=ALLOCATION+REQUEST NEED=NEED-REQUEST (4)系統執行安全性檢查,如安全,則分配成立;否則試探險性分配作廢,系統恢復原狀,進程等待。 3.安全性檢查 (1)設置兩個工作向量WORK=AVAILABLE;FINISH[M]=FALSE (2)從進程集合中找到一個滿足下述條件的進程, FINISH[i]=FALSE NEED<=WORK 如找到,執行(3);否則,執行(4) (3)設進程獲得資源,可順利執行,直至完成,從而釋放資源。 WORK=WORK+ALLOCATION FINISH=TRUE GO TO 2 (4)如所有的進程Finish[M]=true,則表示安全;否則系統不安全。
上傳時間: 2013-12-24
上傳用戶:alan-ee