亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

晶體管放大電路

  • LM3S系列單片機擴展按鍵及數碼管及RTC應用筆記

    LM3S 系列的單片機通過ZLG7290 擴展按鍵、7 段LED 數碼管,及通過PCF8563 擴展高精低耗的RTC時鐘。本文通過EasyARM615 和ZYPM7290 模塊為例子講述。

    標簽: LM3S RTC 單片機 擴展

    上傳時間: 2013-10-15

    上傳用戶:清山綠水

  • 用單片機制作通用型電視遙控器

    用單片機制作通用型電視遙控器:本文介紹了一種用MCS-51系列單片機AT89C52代替專用遙控芯片的設計方案,通過軟件模擬實現了電視機遙控編碼的發射,并且達到“一器多用”。上世紀八十年代初,日本率先在電視產品中使用了紅外遙控技術,目前已經在電視機上得到了廣泛應用。電視遙控器使用的是專用集成發射芯片來實現遙控碼的發射,如東芝TC9012,飛利浦SAA3010T等。這些芯片價格較貴,且相互之間采用的遙控編碼格式互不兼容,所以各機型的遙控器通常只能針對各自的遙控對象而無法通用。本文在試驗驗證的基礎上,介紹了如何利用低成本的MCS-51系列單片機來實現遙控碼的模擬發射,并實現遙控器的通用化。遙控發射技術的基本原理通常彩電遙控信號的發射,就是將某個按鍵所對應的控制指令和系統碼(由0和1組成的序列),調制在32~56KHz范圍內的載波上,然后經放大、驅動紅外發射管將信號發射出去。不同公司的遙控芯片,采用的遙控碼格式也不一樣。在此介紹較普遍的兩種,一種是NEC標準,一種是PHILIPS 標準。

    標簽: 用單片機 通用型電 遙控器

    上傳時間: 2013-11-17

    上傳用戶:jiangfire

  • MSP430系列超低功耗16位單片機原理與應用

    MSP430系列超低功耗16位單片機原理與應用TI公司的MSP430系列微控制器是一個近期推出的單片機品種。它在超低功耗和功能集成上都有一定的特色,尤其適合應用在自動信號采集系統、液晶顯示智能化儀器、電池供電便攜式裝置、超長時間連續工作設備等領域。《MSP430系列超低功耗16位單片機原理與應用》對這一系列產品的原理、結構及內部各功能模塊作了詳細的說明,并以方便工程師及程序員使用的方式提供軟件和硬件資料。由于MSP430系列的各個不同型號基本上是這些功能模塊的不同組合,因此,掌握《MSP430系列超低功耗16位單片機原理與應用》的內容對于MSP430系列的原理理解和應用開發都有較大的幫助。《MSP430系列超低功耗16位單片機原理與應用》的內容主要根據TI公司的《MSP430 Family Architecture Guide and Module Library》一書及其他相關技術資料編寫。  《MSP430系列超低功耗16位單片機原理與應用》供高等院校自動化、計算機、電子等專業的教學參考及工程技術人員的實用參考,亦可做為應用技術的培訓教材。MSP430系列超低功耗16位單片機原理與應用 目錄  第1章 MSP430系列1.1 特性與功能1.2 系統關鍵特性1.3 MSP430系列的各種型號??第2章 結構概述2.1 CPU2.2 代碼存儲器?2.3 數據存儲器2.4 運行控制?2.5 外圍模塊2.6 振蕩器、倍頻器和時鐘發生器??第3章 系統復位、中斷和工作模式?3.1 系統復位和初始化3.2 中斷系統結構3.3 中斷處理3.3.1 SFR中的中斷控制位3.3.2 外部中斷3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗應用要點??第4章 存儲器組織4.1 存儲器中的數據4.2 片內ROM組織4.2.1 ROM表的處理4.2.2 計算分支跳轉和子程序調用4.3 RAM與外圍模塊組織4.3.1 RAM4.3.2 外圍模塊--地址定位4.3.3 外圍模塊--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序計數器PC5.1.2 系統堆棧指針SP5.1.3 狀態寄存器SR5.1.4 常數發生寄存器CG1和CG2?5.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令集概述5.3.1 雙操作數指令5.3.2 單操作數指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的軟件限制6.4.1 硬件乘法器的軟件限制--尋址模式6.4.2 硬件乘法器的軟件限制--中斷程序??第7章 振蕩器與系統時鐘發生器?7.1 晶體振蕩器7.2 處理機時鐘發生器7.3 系統時鐘工作模式7.4 系統時鐘控制寄存器7.4.1 模塊寄存器7.4.2 與系統時鐘發生器相關的SFR位7.5 DCO典型特性??第8章 數字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理圖8.1.3 P0的中斷控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理圖8.2.3 P1、P2的中斷控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理圖8.4 LCD端口8.5 LCD端口--定時器/端口比較器??第9章 通用定時器/端口模塊?9.1 定時器/端口模塊操作9.1.1 定時器/端口計數器TPCNT1--8位操作9.1.2 定時器/端口計數器TPCNT2--8位操作9.1.3 定時器/端口計數器--16位操作9.2 定時器/端口寄存器9.3 定時器/端口SFR位9.4 定時器/端口在A/D中的應用9.4.1 R/D轉換原理9.4.2 分辨率高于8位的轉換??第10章 定時器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD時鐘信號fLCD?10.2 8位間隔定時器/計數器10.2.1 8位定時器/計數器的操作10.2.2 8位定時器/計數器的寄存器10.2.3 與8位定時器/計數器有關的SFR位10.2.4 8位定時器/計數器在UART中的應用10.3 看門狗定時器11.1.3 比較模式11.1.4 輸出單元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕獲/比較控制寄存器CCTL11.2.3 TimerA中斷向量寄存器11.3 TimerA的應用11.3.1 TimerA增計數模式應用11.3.2 TimerA連續模式應用11.3.3 TimerA增/減計數模式應用11.3.4 TimerA軟件捕獲應用11.3.5 TimerA處理異步串行通信協議11.4 TimerA的特殊情況11.4.1 CCR0用做周期寄存器11.4.2 定時器寄存器的啟/停11.4.3 輸出單元Unit0??第12章 USART外圍接口--UART模式?12.1 異步操作12.1.1 異步幀格式12.1.2 異步通信的波特率發生器12.1.3 異步通信格式12.1.4 線路空閑多處理機模式12.1.5 地址位格式12.2 中斷與控制功能12.2.1 USART接收允許12.2.2 USART發送允許12.2.3 USART接收中斷操作12.2.4 USART發送中斷操作12.3 控制與狀態寄存器12.3.1 USART控制寄存器UCTL12.3.2 發送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調制控制寄存器12.3.5 USART接收數據緩存URXBUF12.3.6 USART發送數據緩存UTXBUF12.4 UART模式--低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART模式的波特率12.4.3 節約MSP430資源的多處理機模式12.5 波特率的計算??第13章 USART外圍接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的從模式--MM=0、SYNC=113.2 中斷與控制功能13.2.1 USART接收允許13.2.2 USART發送允許13.2.3 USART接收中斷操作13.2.4 USART發送中斷操作13.3 控制與狀態寄存器13.3.1 USART控制寄存器13.3.2 發送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數據緩存URXBUF13.3.6 USART發送數據緩存UTXBUF??第14章 液晶顯示驅動?14.1 LCD驅動基本原理14.2 LCD控制器/驅動器14.2.1 LCD控制器/驅動器功能14.2.2 LCD控制與模式寄存器14.2.3 LCD顯示內存14.2.4 LCD操作軟件例程14.3 LCD端口功能14.4 LCD與端口模式混合應用實例??第15章 A/D轉換器?15.1 概述15.2 A/D轉換操作15.2.1 A/D轉換15.2.2 A/D中斷15.2.3 A/D量程15.2.4 A/D電流源15.2.5 A/D輸入端與多路切換15.2.6 A/D接地與降噪15.2.7 A/D輸入與輸出引腳15.3 A/D控制寄存器??第16章 其他模塊16.1 晶體振蕩器16.2 上電電路16.3 晶振緩沖輸出??附錄A 外圍模塊地址分配?附錄B 指令集描述?B1 指令匯總B2 指令格式B3 不增加ROM開銷的指令模擬B4 指令說明B5 用幾條指令模擬的宏指令??附錄C EPROM編程?C1 EPROM操作C2 快速編程算法C3 通過串行數據鏈路應用\"JTAG\"特性的EPROM模塊編程C4 通過微控制器軟件實現對EPROM模塊編程??附錄D MSP430系列單片機參數表?附錄E MSP430系列單片機產品編碼?附錄F MSP430系列單片機封裝形式?

    標簽: MSP 430 超低功耗 位單片機

    上傳時間: 2014-05-07

    上傳用戶:lwq11

  • MSP430系列flash型超低功耗16位單片機

    MSP430系列flash型超低功耗16位單片機MSP430系列單片機在超低功耗和功能集成等方面有明顯的特點。該系列單片機自問世以來,頗受用戶關注。在2000年該系列單片機又出現了幾個FLASH型的成員,它們除了仍然具備適合應用在自動信號采集系統、電池供電便攜式裝置、超長時間連續工作的設備等領域的特點外,更具有開發方便、可以現場編程等優點。這些技術特點正是應用工程師特別感興趣的。《MSP430系列FLASH型超低功耗16位單片機》對該系列單片機的FLASH型成員的原理、結構、內部各功能模塊及開發方法與工具作詳細介紹。MSP430系列FLASH型超低功耗16位單片機 目錄  第1章 引 論1.1 MSP430系列單片機1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 結構概述2.1 引 言2.2 CPU2.3 程序存儲器2.4 數據存儲器2.5 運行控制2.6 外圍模塊2.7 振蕩器與時鐘發生器第3章 系統復位、中斷及工作模式3.1 系統復位和初始化3.1.1 引 言3.1.2 系統復位后的設備初始化3.2 中斷系統結構3.3 MSP430 中斷優先級3.3.1 中斷操作--復位/NMI3.3.2 中斷操作--振蕩器失效控制3.4 中斷處理 3.4.1 SFR中的中斷控制位3.4.2 中斷向量地址3.4.3 外部中斷3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗應用的要點23第4章 存儲空間4.1 引 言4.2 存儲器中的數據4.3 片內ROM組織4.3.1 ROM 表的處理4.3.2 計算分支跳轉和子程序調用4.4 RAM 和外圍模塊組織4.4.1 RAM4.4.2 外圍模塊--地址定位4.4.3 外圍模塊--SFR4.5 FLASH存儲器4.5.1 FLASH存儲器的組織4.5.2 FALSH存儲器的數據結構4.5.3 FLASH存儲器的控制寄存器4.5.4 FLASH存儲器的安全鍵值與中斷4.5.5 經JTAG接口訪問FLASH存儲器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序計數器PC5.1.2 系統堆棧指針SP5.1.3 狀態寄存器SR5.1.4 常數發生寄存器CG1和CG25.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令組概述5.3.1 雙操作數指令5.3.2 單操作數指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 無符號數相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符號數相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 無符號數乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符號數乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的軟件限制6.4.1 尋址模式6.4.2 中斷程序6.4.3 MACS第7章 基礎時鐘模塊7.1 基礎時鐘模塊7.2 LFXT1與XT27.2.1 LFXT1振蕩器7.2.2 XT2振蕩器7.2.3 振蕩器失效檢測7.2.4 XT振蕩器失效時的DCO7.3 DCO振蕩器7.3.1 DCO振蕩器的特性7.3.2 DCO調整器7.4 時鐘與運行模式7.4.1 由PUC啟動7.4.2 基礎時鐘調整7.4.3 用于低功耗的基礎時鐘特性7.4.4 選擇晶振產生MCLK7.4.5 時鐘信號的同步7.5 基礎時鐘模塊控制寄存器7.5.1 DCO時鐘頻率控制7.5.2 振蕩器與時鐘控制寄存器7.5.3 SFR控制位第8章 輸入輸出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中斷控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口邏輯第9章 看門狗定時器WDT9.1 看門狗定時器9.2 WDT寄存器9.3 WDT中斷控制功能9.4 WDT操作第10章 16位定時器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定時器模式控制10.2.2 時鐘源選擇和分頻10.2.3 定時器啟動10.3 定時器模式10.3.1 停止模式10.3.2 增計數模式10.3.3 連續模式10.3.4 增/減計數模式10.4 捕獲/比較模塊10.4.1 捕獲模式10.4.2 比較模式10.5 輸出單元10.5.1 輸出模式10.5.2 輸出控制模塊10.5.3 輸出舉例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕獲/比較控制寄存器CCTLx10.6.4 Timer_A中斷向量寄存器10.7 Timer_A的UART應用 第11章 16位定時器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定時器長度11.2.2 定時器模式控制11.2.3 時鐘源選擇和分頻11.2.4 定時器啟動11.3 定時器模式11.3.1 停止模式11.3.2 增計數模式11.3.3 連續模式11.3.4 增/減計數模式11.4 捕獲/比較模塊11.4.1 捕獲模式11.4.2 比較模式11.5 輸出單元11.5.1 輸出模式11.5.2 輸出控制模塊11.5.3 輸出舉例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕獲/比較控制寄存器CCTLx11.6.4 Timer_B中斷向量寄存器第12章 USART通信模塊的UART功能12.1 異步模式12.1.1 異步幀格式12.1.2 異步通信的波特率發生器12.1.3 異步通信格式12.1.4 線路空閑多機模式12.1.5 地址位多機通信格式12.2 中斷和中斷允許12.2.1 USART接收允許12.2.2 USART發送允許12.2.3 USART接收中斷操作12.2.4 USART發送中斷操作12.3 控制和狀態寄存器12.3.1 USART控制寄存器UCTL12.3.2 發送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調整控制寄存器12.3.5 USART接收數據緩存URXBUF12.3.6 USART發送數據緩存UTXBUF12.4 UART模式,低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART的波特率12.4.3 多處理機模式對節約MSP430資源的支持12.5 波特率計算 第13章 USART通信模塊的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的從模式13.2 中斷與控制功能 13.2.1 USART接收/發送允許位及接收操作13.2.2 USART接收/發送允許位及發送操作13.2.3 USART接收中斷操作13.2.4 USART發送中斷操作13.3 控制與狀態寄存器13.3.1 USART控制寄存器13.3.2 發送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數據緩存URXBUF13.3.6 USART發送數據緩存UTXBUF第14章 比較器Comparator_A14.1 概 述14.2 比較器A原理14.2.1 輸入模擬開關14.2.2 輸入多路切換14.2.3 比較器14.2.4 輸出濾波器14.2.5 參考電平發生器14.2.6 比較器A中斷電路14.3 比較器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比較器A應用14.4.1 模擬信號在數字端口的輸入14.4.2 比較器A測量電阻元件14.4.3 兩個獨立電阻元件的測量系統14.4.4 比較器A檢測電流或電壓14.4.5 比較器A測量電流或電壓14.4.6 測量比較器A的偏壓14.4.7 比較器A的偏壓補償14.4.8 增加比較器A的回差第15章 模數轉換器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC內核15.2.2 參考電平15.3 模擬輸入與多路切換15.3.1 模擬多路切換15.3.2 輸入信號15.3.3 熱敏二極管的使用15.4 轉換存儲15.5 轉換模式15.5.1 單通道單次轉換模式15.5.2 序列通道單次轉換模式15.5.3 單通道重復轉換模式15.5.4 序列通道重復轉換模式15.5.5 轉換模式之間的切換15.5.6 低功耗15.6 轉換時鐘與轉換速度15.7 采 樣15.7.1 采樣操作15.7.2 采樣信號輸入選擇15.7.3 采樣模式15.7.4 MSC位的使用15.7.5 采樣時序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 轉換存儲寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中斷標志寄存器ADC12IFG.x和中斷允許寄存器ADC12IEN.x15.8.5 中斷向量寄存器ADC12IV15.9 ADC12接地與降噪第16章 FLASH型芯片的開發16.1 開發系統概述16.1.1 開發技術16.1.2 MSP430系列的開發16.1.3 MSP430F系列的開發16.2 FLASH型的FET開發方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 標準復位過程和進入BSL過程16.3.2 BSL的UART協議16.3.3 數據格式16.3.4 退出BSL16.3.5 保護口令16.3.6 BSL的內部設置和資源附錄A 尋址空間附錄B 指令說明B.1 指令匯總B.2 指令格式B.3 不增加ROM開銷的模擬指令B.4 指令說明(字母順序)B.5 用幾條指令模擬的宏指令附錄C MSP430系列單片機參數表附錄D MSP430系列單片機封裝形式附錄E MSP430系列器件命名

    標簽: flash MSP 430 超低功耗

    上傳時間: 2014-04-28

    上傳用戶:sssnaxie

  • 高壓雙管反激變換器的設計

    高壓雙管反激變換器的設計:介紹一種雙管反激的電路拓撲,分析了其工作原理,給出了一些關鍵技術參數的計算公式,設計并研制成功的30W 380V AC5 0H z/510V DC/+15.1 V DC(1A )、+5.2VDC(2A)輔助開關電源具有功率密度高、變換效率高、可靠性高等優良的綜合性能。該變換器在高電壓輸人情況下有重要的應用價值。【關 鍵 詞 】變換器,輔助開關電源,雙管反激 [Abstract】 A n e wt opologyfo rd oubles witchfl ybackc onverteris in troduced.Th eo perationp rincipleis a nalyzeda nds ome for mulas for calculating key parameters for the topology are presented. The designed and produced auxiliary switching power supply,i. e. 30W 380V AC5 0H z/5 10V DC/+15.1 V DC《1A )、+5.2 V DC《2A ),hase xcellentc omprehensivep erformances sucha sh ighp owerd ensity, hi ghc onversione fficiencya ndh ighr eliability.Th isc onverterh asim portanta pplicationv aluef orh igh input voltag [Keywords ]converter,au xiliary switchingp owers upply,do ubles witchf lybac

    標簽: 雙管反激 變換器

    上傳時間: 2013-11-01

    上傳用戶:Ants

  • 基于單片機的LED漢字顯示屏設計與制作

    基于單片機的LED漢字顯示屏設計與制作:在大型商場、車站、碼頭、地鐵站以及各類辦事窗口等越來越多的場所需要用LED點陣顯示圖形和漢字。LED行業已成為一個快速發展的新興產業,市場空間巨大,前景廣闊。隨著信息產業的高速發展,LED顯示作為信息傳播的一種重要手段,已廣泛應用于室內外需要進行服務內容和服務宗旨宣傳的公眾場所,例如戶內外公共場所廣告宣傳、機場車站旅客引導信息、公交車輛報站系統、證券與銀行信息顯示、餐館報價信息豆示、高速公路可變情報板、體育場館比賽轉播、樓宇燈飾、交通信號燈、景觀照明等。顯然,LED顯示已成為城市亮化、現代化和信息化社會的一個重要標志。 本文基于單片機(AT89C51)講述了16×16 LED漢字點陣顯示的基本原理、硬件組成與設計、程序編譯與下載等基本環節和相關技術。2 硬件電路組成及工作原理本產品擬采用以AT89C51單片機為核心芯片的電路來實現,主要由AT89C51芯片、時鐘電路、復位電路、列掃描驅動電路(74HC154)、16×16 LED點陣5部分組成,如圖1所示。 其中,AT89C51是一種帶4 kB閃爍可編程可擦除只讀存儲器(Falsh Programmable and Erasable Read OnlyMemory,FPEROM)的低電壓、高性能CMOS型8位微處理器,俗稱單片機。該器件采用ATMEL高密度非易失存儲器制造技術制造,與工業標準的MCS-51指令集和輸出管腳相兼容。由于將多功能8位CPU和閃爍存儲器組合在單個芯片中,能夠進行1 000次寫/擦循環,數據保留時間為10年。他是一種高效微控制器,為很多嵌入式控制系統提供了一種靈活性高且價廉的方案。因此,在智能化電子設計與制作過程中經常用到AT89C51芯片。時鐘電路由AT89C51的18,19腳的時鐘端(XTALl及XTAL2)以及12 MHz晶振X1、電容C2,C3組成,采用片內振蕩方式。復位電路采用簡易的上電復位電路,主要由電阻R1,R2,電容C1,開關K1組成,分別接至AT89C51的RST復位輸入端。LED點陣顯示屏采用16×16共256個象素的點陣,通過萬用表檢測發光二極管的方法測試判斷出該點陣的引腳分布,如圖2所示。 我們把行列總線接在單片機的IO口,然后把上面分析到的掃描代碼送人總線,就可以得到顯示的漢字了。但是若將LED點陣的行列端口全部直接接入89S51單片機,則需要使用32條IO口,這樣會造成IO資源的耗盡,系統也再無擴充的余地。因此,我們在實際應用中只是將LED點陣的16條行線直接接在P0口和P2口,至于列選掃描信號則是由4-16線譯碼器74HC154來選擇控制,這樣一來列選控制只使用了單片機的4個IO口,節約了很多IO資源,為單片機系統擴充使用功能提供了條件。考慮到P0口必需設置上拉電阻,我們采用4.7 kΩ排電阻作為上拉電阻。

    標簽: LED 單片機 漢字 顯示屏設計

    上傳時間: 2013-10-16

    上傳用戶:ywcftc277

  • 單片機外圍線路設計

    當拿到一張CASE單時,首先得確定的是能用什么母體才能實現此功能,然后才能展開對外圍硬件電路的設計,因此首先得了解每個母體的基本功能及特點,下面大至的介紹一下本公司常用的IC:單芯片解決方案• SN8P1900 系列–  高精度 16-Bit  模數轉換器–  可編程運算放大器 (PGIA)•  信號放大低漂移: 2V•  放大倍數可編程: 1/16/64/128  倍–  升壓- 穩壓調節器 (Charge-Pump Regulator)•  電源輸入: 2.4V ~ 5V•  穩壓輸出: e.g. 3.8V at SN8P1909–  內置液晶驅動電路 (LCD Driver)–  單芯片解決方案 •  耳溫槍  SN8P1909 LQFP 80 Pins• 5000 解析度量測器 SN8P1908 LQFP 64 Pins•  體重計  SN8P1907 SSOP 48 Pins單芯片解決方案• SN8P1820 系列–  精確的12-Bit  模數轉換器–  可編程運算放大器 (PGIA)• Gain Stage One: Low Offset 5V, Gain: 16/32/64/128• Gain Stage One: Low Offset 2mV, Gain: 1.3 ~ 2.5–  升壓- 穩壓調節器•  電源輸入: 2.4V ~ 5V•  穩壓輸出: e.g. 3.8V at SN8P1829–  內置可編程運算放大電路–  內置液晶驅動電路 –  單芯片解決方案 •  電子醫療器 SN8P1829 LQFP 80 Pins 高速/低功耗/高可靠性微控制器• 最新SN8P2000 系列– SN8P2500/2600/2700 系列– 高度抗交流雜訊能力• 標準瞬間電壓脈沖群測試 (EFT): IEC 1000-4-4• 雜訊直接灌入芯片電源輸入端• 只需添加1顆 2.2F/50V 旁路電容• 測試指標穩超 4000V (歐規)– 高可靠性復位電路保證系統正常運行• 支持外部復位和內部上電復位• 內置1.8V 低電壓偵測可靠復位電路• 內置看門狗計時器保證程序跳飛可靠復位– 高抗靜電/栓鎖效應能力– 芯片工作溫度有所提高: -200C ~ 700C     工規芯片溫度: -400C ~ 850C 高速/低功耗/高可靠性微控制器• 最新 SN8P2000 系列– SN8P2500/2600/2700 系列– 1T  精簡指令級結構• 1T:  一個外部振蕩周期執行一條指令•  工作速度可達16 MIPS / 16 MHz Crystal–  工作消耗電流 < 2mA at 1-MIPS/5V–  睡眠模式下消耗電流 < 1A / 5V額外功能• 高速脈寬調制輸出 (PWM)– 8-Bit PWM up to 23 KHz at 12 MHz System Clock– 6-Bit PWM up to 93 KHz  at 12 MHz System Clock– 4-Bit PWM up to 375 KHz  at 12 MHz System Clock• 內置高速16 MHz RC振蕩器 (SN8P2501A)• 電壓變化喚醒功能• 可編程控制沿觸發/中斷功能– 上升沿 / 下降沿 / 雙沿觸發• 串行編程接口

    標簽: 單片機 線路設計

    上傳時間: 2013-10-21

    上傳用戶:jiahao131

  • 自制微型51/AVR通用編程器

    微型51/AVR 編程器套件裝配說明書 請您在動手裝配這個編程器之前,務必先看完本說明書,避免走彎路。 1.收到套件后請對照元器件列表檢查一下,元件、配件是否齊全? Used  Part Type        Designator ==== ================ ========== 1    1k               R6         1    1uf 50V          C11        5    2k2              R2 R3 R4 R5 R11     1    10K*8            RN1        2    11.0592MHZ       Q1 Q2      1    12V,0.5W         D2         2    15k              R7 R8      2    21k              R9 R10     4    33p              C6 C7 C8 C9         1    47uf 25V         C10        1    74HC164          IC6        2    78L05            IC4 IC5    1    100uf 25V        C12        1    220R             R1         1    AT89C51          IC2        1    B40C800(W02)     D1         2    BS170            T1 T2      1    BS250            T3         1    DB9/F            J2         1    J1X2             J1         1    LED GN5          D3         1    LM317L           IC1        1    TLC2272          IC7        1    ZIF40            IC3        5    1uf              C1 C2 C3 C4 C5 另外,套件配有1.5米串行電纜一根和配套的PCB一塊,不含電源。編程器使用的15V交流電源或12V直流電源需要自己配套。2.裝配要點:先焊接阻容元件,3個集成電路插座(IC2,IC7,IC6)其次是晶振, 全橋,穩壓IC 等,然后焊接J2,最后焊接T1,T2,T3三只場效應管。焊接場效應管時務必按照以下方法:拔去電烙鐵的電源,使用電烙鐵余溫去焊接三只場效應管,否則靜電很容易損壞管子。這是裝配成功的關鍵。這三只管子有問題,最典型的現象是不能聯機。由于電源插座封裝比較特殊,國內無法配套上,已改用電源線接線柱,可直接焊接在PCB板焊盤上,如下圖1所示(在下圖中兩個紅色圓圈內指示的焊盤),然后在連接到套件中配套的電源插座上。最近有朋友反映用15V交流比較麻煩,還要另外配變壓器。如果要使用12V的直流電,無需將全橋焊上,將兩個接線柱分別焊接在全橋的正負輸出位置的焊盤上即可,如下圖2所示,藍色圓圈內指示的焊盤,連接電源的時候要注意正負極,不要接錯了。方形焊盤是正極。40腳ZIF插座焊接前,應該將BR1飛線焊接好。注意:由于焊盤比較小,注意焊接溫度,不要高溫長時間反復焊接,會導致焊盤脫落。

    標簽: AVR 51 編程器

    上傳時間: 2013-12-31

    上傳用戶:caiguoqing

  • 基于Proteus的單片機出租車計價器的設計

    隨著單片機性能不斷提高而價格卻不斷下降, 單片機控制在越來越多的領域得以應用。按照傳統的模式, 在整個項目開發過程中, 先根據控制系統要求設計原理圖, PCB 電路圖繪制, 電路板制作, 元器件的焊接, 然后進行軟件編程, 通過仿真器對系統硬件和軟件調試, 最后將調試成功的程序固化到單片機中。這一過程中的主要問題是, 應用程序需要在硬件完成的情況下才能進行調試。雖然有的軟件可以進行模擬調試, 但是對于一些復雜的程序如人機交互程序, 在沒有硬件的時候, 沒有界面的真實感, 給調試帶來困難。在軟硬件的配合中如需要修改硬件, 要重新制板, 在時間和投入上帶來很大的麻煩。縱觀整個過程, 無論是從硬件成本上, 還是從調試周期上, 傳統開發模式的效率有待提高。能否只使用一種開發工具兼顧仿真, 調試, 制板, 以及最大限度的軟件模擬來作為單片機的開發平臺, 用它取代編程器、仿真器、成品前的硬件測試等工作是廣大單片機開發者的夢想。 PROTEUS 軟件介紹為了更加直觀具體地說明Proteus 軟件的實用價值, 本文以一具體的TAXI 的計價器和計時器電路板的設計過程為例。其電路板要實現的功能是:㈠計時功能(相當于時鐘);㈡里程計價功能:兩公里以內價格為4 元, 以后每一公里加0.7 元, 不足一公里取整(如10.3 公里取11 公里);㈢通過鍵盤輸入里程, 模擬計算里程費, 實現Y= (X- 2)*0.7+4 的簡單計算。基于上述功能, 選用ATMEL 公司生產的通用芯片AT89C51 單片機構成應用系統。AT89C51 是內含8 位4K 程序存儲器, 128B 數據存儲器, 2 個定時器/計數器的通用芯片。系統開發環境采用ProteusISIS 6。2.1 計價器模擬系統硬件構成系統主要由一個AT89C51 單片機、74LS373、74LS240、矩陣鍵盤、4 位7 段數碼管等組成。通用AT89C51 單片機芯片作為整個電路的核心部分、74LS373 作為LED 段選控制、74LS240四路反相器則為4 位共陰極7 段數碼管提供位選通信號、矩陣鍵盤輸入控制信號。

    標簽: Proteus 單片機 出租車計價器

    上傳時間: 2013-11-09

    上傳用戶:木子葉1

  • 4位八段數碼管的十進制加計數仿真實驗(含電路圖和仿真文件)

    4位八段數碼管的十進制加計數仿真實驗,程序采用匯編語言編寫。此程序在仿真軟件上與EDN-51實驗板上均通過。仿真圖中的數碼管位驅動采用74HC04,如按EDN-51板上用想同的PNP三極管驅動在仿真軟件上則無法正常顯示。程序共分5塊,STAR0為數據初始化,STAR2為計數子程序,STAR3為4位數碼管動態顯示子程序,STAR4為按鍵掃描子程序,STS00是延時子程序。由于EDN-51實驗板上沒裝BCD譯碼器,所以編寫程序比較煩瑣。 程序如下: ORG 0000H                LJMP STAR0                        ;轉程序 SRAR0ORG 0200H                                          ;程序地址 0200HSTAR0:   CLR 00                                  ;位 00 清 0               MOV P1,#0FFH                    ;#0FFH-->P1               MOV P2,#0FH                      ;#0FH-->P2               MOV P0,#0FFH                    ;#0FFH-->P0               MOV 30H,#00H                    ;#00H-->30H               MOV 31H,#00H                    ;#00H-->30H               MOV 32H,#00H                    ;#00H-->30H               MOV 33H,#00H                    ;#00H-->30H               LJMP STAR3                        ;轉程序 SRAR3STAR2:   MOV A,#0AH                       ;#0AH-->A               INC 30H                                ;30H+1               CJNE A,30H,STJE                 ;30H 與 A 比較,不等轉移 STJE               MOV 30H,#00H                    ;#00H-->30H               INC 31H                                ;31H+1               CJNE A,31H,STJE                 ;31H 與 A 比較,不等轉移 STJE               MOV 31H,#00H                    ;#00H-->31H               INC 32H                                ;32H+1               CJNE A,32H,STJE                 ;32H 與 A 比較,不等轉移 STJE               MOV 32H,#00H                    ;#00H-->32H               INC 33H                                ;33H+1               CJNE A,33H,STJE                 ;33H 與 A 比較,不等轉移 STJE               MOV 33H,#00H                    ;#00H-->33H               MOV 32H,#00H                    ;#00H-->32H               MOV 31H,#00H                    ;#00H-->31H               MOV 30H,#00H                    ;#00H-->30HSTJE:      RET                                        ;子程序調用返回STAR3:   MOV R0,#30H                      ;#30H-->R0                MOV R6,#0F7H                   ;#0F7H-->R6SMG0:    MOV P1,#0FFH                    ;#0FFH-->P1                MOV A,R6                            ;R6-->A                MOV P1,A                            ;A-->P1                RR A                                     ;A向右移一位                MOV R6,A                           ;A-->R6                MOV A,@R0                       ;@R0-->A                ADD A,#04H                        ;#04H-->A                MOVC A,@A+PC               ;A+PC-->                MOV P0,A                            ;A-->P0                AJMP SMG1                        ;轉程序 SMG1SDATA:   DB 0C0H,0F9H,0A4H,0B0H,99H                DB 92H,82H,0F8H,80H,90H SMG1:     LCALL STAR4                    ;轉子程序 SRAR4                LCALL STS00                     ;轉子程序 STS00                INC R0                                 ;R0+1                CJNE R6,#07FH,SMG0       ;#07FH 與 R6 比較,不等轉移 SMG0                AJMP STAR3                       ;轉程序 SRAR3STAR4:    JNB P2.0,ST1                      ;P2.0=0 轉 ST1                CLR 00                                 ;位 00 清 0                SJMP ST3                            ;轉ST3ST1:         JNB 00,ST2                          ;位 00=0 轉 ST2                SJMP ST3                            ;轉 ST3ST2:         LCALL STAR2                    ;調子程序 STAR2                SETB 00                               ;位 00 置 1ST3:         RET                                      ;子程序調用返回ORG 0100H                                         ;地址 0100HSTS00:     MOV 60H,#003H                ;#003H-->60H  (211)DE001:     MOV 61H,#0FFH               ;#0FFH-->61H (255)DE002:     DJNZ 61H,DE002               ;61H 減 1 不等于 0 轉 DE002                 DJNZ 60H,DE001               ;60H 減 1 不等于 0 轉 DE001                 RET                                     ;子程序調用返回                 END                                    ;結束 上次的程序共有293句,經小組成員建議,本人經幾天的研究寫了下面的這個程序,現在的程序用了63句,精簡了230句。功能沒有減。如誰有更簡練的程序,請發上來,大家一起學習。 4位八段數碼管的十進制加計數仿真實驗(含電路圖和仿真文件)

    標簽: 數碼管 十進制 仿真實驗 仿真

    上傳時間: 2013-10-11

    上傳用戶:sssl

主站蜘蛛池模板: 荥阳市| 福建省| 林州市| 类乌齐县| 冷水江市| 清新县| 惠安县| 安仁县| 康定县| 桑日县| 黄大仙区| 保亭| 防城港市| 高陵县| 特克斯县| 栖霞市| 克什克腾旗| 大港区| 成都市| 奇台县| 寿光市| 奎屯市| 诸暨市| 巴马| 罗定市| 乡宁县| 丽水市| 华坪县| 周口市| 宜城市| 麻栗坡县| 广宗县| 阿拉尔市| 松阳县| 定西市| 武威市| 南川市| 凤城市| 尉犁县| 昌邑市| 梨树县|