亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

差分檢測(cè)

  • 小型DFN封裝的電子電路斷路器免除了檢測電阻器

    一直以來, 電子電路斷路器( E C B ) 都是由一個MOSFET、一個 MOSFET 控制器和一個電流檢測電阻器所組成的。

    標簽: DFN 封裝 電子電路 斷路器

    上傳時間: 2013-10-18

    上傳用戶:qwerasdf

  • DN510 - 具儀表級準確度的系統監視器用于測量相對濕度

    LTC®2991 系統監視器內置了這種精細復雜的電路,它能把一個小信號晶體管變成一個準確的溫度傳感器。該器件不僅可在測量遠端二極管溫度時提供 ±1°C的準確度,還能測量其自身的電源電壓、單端電壓(0 至 VCC) 和差分電壓 (±325mV)。

    標簽: 510 DN 儀表 準確度

    上傳時間: 2013-11-05

    上傳用戶:gps6888

  • 高性能、低價格、支持JTAG仿真的ATMEGA16單片機

    在16MHZ頻率下速度為16MIPS的8位RISC結構單片機,內含硬件乘法器。 支持JTAG端口仿真和編程,仿真效果比傳統仿真同更真實有效。 8通道10位AD轉換器,支持單端和雙端差分信號輸入,內帶增益可編程運算放大器。 16K字節的FLASH存貯器,支持ISP、IAP編程,使系統開發、生產、維護更容易。 多達1K字節的SRAM,32個通用寄存器,三個數據指針,使用C語言編程更容易。 512字節的EEPROM存貯器,可以在系統掉電時保存您的重要數據。 多達20個中斷源,每個中斷有獨立的中斷向量入口地址。 2個8位定時/計數器,1個16位定時/計數器,帶捕捉、比較功能,有四個通道的PWM。 硬件USART、SPI和基于字節處理的I2C接口。 杰出的電氣性能,超強的抗干擾能力。每個IO口可負載40mA的電流,總電流不超過200mA。 可選片內/片外RC振蕩、石英/陶瓷晶振、外部時鐘,更具備實時時鐘(RTC)功能;片內RC振蕩可達8MHZ,頻率可校調到1%精度;片外晶振振蕩幅度可調,以改善EMI性能。 內置模擬量比較器。 可以用熔絲開啟、帶獨立振蕩器的看門狗,看門狗溢出時間分8級可調。 內置上電復位電路和可編程低電壓檢測(BOD)復位電路。 六種睡眠模式,給你更低的功耗和更靈活的選擇。 ATMEGA16L工作電壓2.7V-5.5V,工作頻率0-8MHZ;ATMEGA16工作電壓4.5-5.5V,工作頻率0-16MHZ。 32個IO口,DIP40、TQFP44封裝。 與其它8位單片機相比,有更高的程序安全性,保護您的知識產權。

    標簽: ATMEGA JTAG 16 性能

    上傳時間: 2013-11-22

    上傳用戶:wcl168881111111

  • 基于P87C591的CAN總線系統智能節點設計

    基于P87 C591的CAN總線系統智能節點設計Design of CAN System Intelligent Node Based on P87C591 給出了基于帶CAN控制器的單片8位微控制器P87C591的智能節點的硬件電路及軟件結構,詳細介紹了設計中的難點及實現過程中應注意的問題。關鍵詞:CAN總線;智能節點 Abstract:A h ardc ircuita nds oftw arec onfigurationo fth ei ntelligentnode based on a microcontroller with CAN controller P87C591 arepresented.E speciallyt hec ruxi nd esigninga ndt hep roblemst hatshould be paid attention in realizing are discussed in details.Keyw ords:C AN;in telligentn ode CA N 總線 是德國Bosch從20世紀80年代初為解決現代汽車中眾多的控制與測試儀器之間的數據交換而開發的一種串行數據通信協議,它是一種多主總線,通信介質可以是雙絞線、同軸電纜或光導纖維。由于CAN總線具有較強的糾錯能力,支持差分收發,因而適合高噪聲環境。并具有較遠的傳輸距離,適用于許多領域的分布式測控系統。目前已在工業自動化、建筑物環境控制、醫療設備等許多領域得到廣泛的應用。CAN已成為國際標準化組織IS011898標準。

    標簽: P87C591 CAN 總線系統 智能節點

    上傳時間: 2013-10-30

    上傳用戶:xymbian

  • RS232串行接口電平轉接器

    RS-232-C 是PC 機常用的串行接口,由于信號電平值較高,易損壞接口電路的芯片,與TTL電平不兼容故需使用電平轉換電路方能與TTL 電路連接。本產品(轉接器),可以實現任意電平下(0.8~15)的UART串行接口到RS-232-C/E接口的無源電平轉接, 使用非常方便可靠。 什么是RS-232-C 接口?采用RS-232-C 接口有何特點?傳輸電纜長度如何考慮?答: 計算機與計算機或計算機與終端之間的數據傳送可以采用串行通訊和并行通訊二種方式。由于串行通訊方式具有使用線路少、成本低,特別是在遠程傳輸時,避免了多條線路特性的不一致而被廣泛采用。 在串行通訊時,要求通訊雙方都采用一個標準接口,使不同 的設備可以方便地連接起來進行通訊。 RS-232-C接口(又稱 EIA RS-232-C)是目前最常用的一種串行通訊接口。它是在1970 年由美國電子工業協會(EIA)聯合貝爾系統、 調制解調器廠家及計算機終端生產廠家共同制定的用于串行通訊的標準。它的全名是“數據終端設備(DTE)和數據通訊設備(DCE)之間串行二進制數據交換接口技術標準”該標準規定采用一個25 個腳的 DB25 連接器,對連接器的每個引腳的信號內容加以規定,還對各種信號的電平加以規定。(1) 接口的信號內容實際上RS-232-C 的25 條引線中有許多是很少使用的,在計算機與終端通訊中一般只使用3-9 條引線。(2) 接口的電氣特性 在RS-232-C 中任何一條信號線的電壓均為負邏輯關系。即:邏輯“1”,-5— -15V;邏輯“0” +5— +15V 。噪聲容限為2V。即 要求接收器能識別低至+3V 的信號作為邏輯“0”,高到-3V的信號 作為邏輯“1”(3) 接口的物理結構 RS-232-C 接口連接器一般使用型號為DB-25 的25 芯插頭座,通常插頭在DCE 端,插座在DTE端. 一些設備與PC 機連接的RS-232-C 接口,因為不使用對方的傳送控制信號,只需三條接口線,即“發送數據”、“接收數據”和“信號地”。所以采用DB-9 的9 芯插頭座,傳輸線采用屏蔽雙絞線。(4) 傳輸電纜長度由RS-232C 標準規定在碼元畸變小于4%的情況下,傳輸電纜長度應為50 英尺,其實這個4%的碼元畸變是很保守的,在實際應用中,約有99%的用戶是按碼元畸變10-20%的范圍工作的,所以實際使用中最大距離會遠超過50 英尺,美國DEC 公司曾規定允許碼元畸變為10%而得出附表2 的實驗結果。其中1 號電纜為屏蔽電纜,型號為DECP.NO.9107723 內有三對雙絞線,每對由22# AWG 組成,其外覆以屏蔽網。2 號電纜為不帶屏蔽的電纜。 2. 什么是RS-485 接口?它比RS-232-C 接口相比有何特點?答: 由于RS-232-C 接口標準出現較早,難免有不足之處,主要有以下四點:(1) 接口的信號電平值較高,易損壞接口電路的芯片,又因為與TTL 電平不兼容故需使用電平轉換電路方能與TTL 電路連接。(2) 傳輸速率較低,在異步傳輸時,波特率為20Kbps。(3) 接口使用一根信號線和一根信號返回線而構成共地的傳輸形式, 這種共地傳輸容易產生共模干擾,所以抗噪聲干擾性弱。(4) 傳輸距離有限,最大傳輸距離標準值為50 英尺,實際上也只能 用在50 米左右。針對RS-232-C 的不足,于是就不斷出現了一些新的接口標準,RS-485 就是其中之一,它具有以下特點:1. RS-485 的電氣特性:邏輯“1”以兩線間的電壓差為+(2—6) V 表示;邏輯“0”以兩線間的電壓差為-(2—6)V 表示。接口信號電平比RS-232-C 降低了,就不易損壞接口電路的芯片, 且該電平與TTL 電平兼容,可方便與TTL 電路連接。2. RS-485 的數據最高傳輸速率為10Mbps3. RS-485 接口是采用平衡驅動器和差分接收器的組合,抗共模干能力增強,即抗噪聲干擾性好。4. RS-485 接口的最大傳輸距離標準值為4000 英尺,實際上可達 3000 米,另外RS-232-C接口在總線上只允許連接1 個收發器, 即單站能力。而RS-485 接口在總線上是允許連接多達128 個收發器。即具有多站能力,這樣用戶可以利用單一的RS-485 接口方便地建立起設備網絡。因RS-485 接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優點就使其成為首選的串行接口。 因為RS485 接口組成的半雙工網絡,一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸。 RS485 接口連接器采用DB-9 的9 芯插頭座,與智能終端RS485接口采用DB-9(孔),與鍵盤連接的鍵盤接口RS485 采用DB-9(針)。3. 采用RS485 接口時,傳輸電纜的長度如何考慮?答: 在使用RS485 接口時,對于特定的傳輸線經,從發生器到負載其數據信號傳輸所允許的最大電纜長度是數據信號速率的函數,這個 長度數據主要是受信號失真及噪聲等影響所限制。下圖所示的最大電纜長度與信號速率的關系曲線是使用24AWG 銅芯雙絞電話電纜(線 徑為0.51mm),線間旁路電容為52.5PF/M,終端負載電阻為100 歐 時所得出。(曲線引自GB11014-89 附錄A)。由圖中可知,當數據信 號速率降低到90Kbit/S 以下時,假定最大允許的信號損失為6dBV 時, 則電纜長度被限制在1200M。實際上,圖中的曲線是很保守的,在實 用時是完全可以取得比它大的電纜長度。 當使用不同線徑的電纜。則取得的最大電纜長度是不相同的。例 如:當數據信號速率為600Kbit/S 時,采用24AWG 電纜,由圖可知最 大電纜長度是200m,若采用19AWG 電纜(線徑為0。91mm)則電纜長 度將可以大于200m; 若采用28AWG 電纜(線徑為0。32mm)則電纜 長度只能小于200m。

    標簽: 232 RS 串行接口 電平

    上傳時間: 2013-10-11

    上傳用戶:時代電子小智

  • 飛秒激光觸發光電導天線產生太赫茲波的研究

    研究了光電導天線產生太赫茲波的輻射特性,利用麥克斯韋方程及其邊界條件,計算了近遠場的電場強度;采用電磁波時域有限差分方法(FDTD),在Matlab系統軟件中,用C語言編寫程序計算光電導偶極天線的輻射太赫茲波的空間電磁場分布,并在計算機上以偽彩色圖形顯示,這種電磁場的可視化結果為天線的設計和改進提供了直觀的物理依據。

    標簽: 光觸發 光電 天線 太赫茲波

    上傳時間: 2013-10-16

    上傳用戶:會稽劍客

  • 一種基于背景減法和幀差的運動目標檢測算法

    針對幀差分法易產生空洞以及背景減法不能檢測出與背景灰度接近的目標的問題,提出了一種將背景減和幀差法相結合的運動目標檢測算法。首先利用連續兩幀圖像進行背景減法得到兩種差分圖像,并用最大類間與類內方差比法得到合適的閾值將這兩種差分圖像二值化,然后將得到的兩種二值化圖像進行或運算,最后利用圖像形態學濾波得到準確的運動目標。實驗結果表明,該算法簡單、易實現、實時性強

    標簽: 背景 減法 檢測算法

    上傳時間: 2013-10-08

    上傳用戶:yqs138168

  • 基于SPI總線的RS-422接口電路設計

    以SPI總線技術為基礎,用微控制器S3C2450X和電平轉換芯片MAX3088設計了一個RS-422接口電路,將SPI單端非平衡傳輸信號轉換為RS-422差分信號。在保證SPI同步傳輸的高效性和高速性的同時,還增強了信號的抗干擾能力。 主要使用9 個信號主機輸入G從機輸出C 主機輸出從機輸入 串行時鐘C 或外設片選或從機選擇信號由從機在主機的控制下產生信號用于禁止或使能外設的收發功能為高電平時\" 禁止外設接收和發送數據為低電平時\" 允許外設接收和發送數據! 圖1 所示是微處理器通過與外設連接的示意圖!

    標簽: SPI 422 RS 總線

    上傳時間: 2014-03-21

    上傳用戶:lizhen9880

  • 基于LON現場總線技術的電力線收發器PLT-22的設計

    LonWorks 開發技術是用于開發監控網絡系統的一個完整的技術平臺。介紹了神經元芯片的基本結構及I / O 配置,神經元芯片可提供單端、差分和特殊應用模式3 種網絡通信方式,便于現場工業設備的聯網通信。分析了電力線收發器PLT-22 的應用,硬件電路由電力線收發器PLT-22、神經元芯片和MAX186 組成,軟件采用Neuron C 專門為神經元芯片設計的程序語言編寫,給出了程序流程圖及關鍵的程序代碼。實際應用表明:基于LonWorks 電力線收發器PLT-22 智能數據測控節點通信性能好,電力網絡能夠用于控制數據的傳輸。關鍵詞: LonWorks; 神經元芯片; 電力線收發器PLT-22; MAX186; Neuron C

    標簽: LON PLT 22 現場總線技術

    上傳時間: 2013-10-27

    上傳用戶:yoleeson

  • java制作的中文分詞DLL文件

    java制作的中文分詞DLL文件,是根據中科院中文分詞系統C++改寫的

    標簽: java DLL

    上傳時間: 2014-08-10

    上傳用戶:WMC_geophy

主站蜘蛛池模板: 府谷县| 增城市| 贡山| 三原县| 汉寿县| 辰溪县| 通化县| 万载县| 金山区| 怀集县| 梧州市| 湟源县| 台山市| 天祝| 湖南省| 永平县| 赣州市| 鱼台县| 湟源县| 盐亭县| 宜城市| 遂川县| 沾益县| 台北县| 宜宾县| 沿河| 乌拉特中旗| 临颍县| 昂仁县| 尉犁县| 贡山| 南丰县| 且末县| 巍山| 彭州市| 嘉善县| 新平| 邮箱| 监利县| 屯门区| 信宜市|