電動車是指以車載電源為動力,用電機(jī)驅(qū)動車輪行駛,符合道路交通、安全法規(guī)各項要求的車輛,電動車無內(nèi)燃機(jī)汽車工作時產(chǎn)生的廢氣,不產(chǎn)生排氣污染,對環(huán)境保護(hù)和空氣的潔凈是十分有益的,幾乎是“零污染”。電動汽車的研究表明,其能源效率已超過汽油機(jī)汽車。特別是在景區(qū)運(yùn)行,汽車走走停停,行駛速度不高,電動汽車更加適宜。電機(jī)驅(qū)動及控制系統(tǒng)是電動汽車的核心,本文主要設(shè)計的是電動游覽車用異步電動機(jī)的驅(qū)動控制系統(tǒng)。 本文設(shè)計了以IGBT作為開關(guān)元器件的主電路結(jié)構(gòu),通過多次改進(jìn)結(jié)構(gòu),并設(shè)計采用了具有硬件互鎖功能的驅(qū)動電路,進(jìn)一步提高了主電路的可靠性。以TI公司生產(chǎn)的TMS320LF2407A芯片為系統(tǒng)控制核心,設(shè)計了控制電路以及保護(hù)電路;編寫了以矢量控制作為核心算法、空間電壓矢量控制作為PWM控制方式的控制程序。通過研究單神經(jīng)元矢量控制的原理,進(jìn)行了仿真,驗證了單神經(jīng)元矢量控制具有更好的快速性、魯棒性和自適應(yīng)性。 通過大量的實驗和實際現(xiàn)場裝車調(diào)試證明,本文設(shè)計的異步電動機(jī)控制系統(tǒng)可靠性高,動態(tài)性能良好,控制簡單,適合在蓄電池供電的逆變器應(yīng)用場合(電動車)。
上傳時間: 2013-04-24
上傳用戶:1109003457
無刷直流電機(jī)是一種性能優(yōu)越、應(yīng)用前景廣闊的電機(jī),應(yīng)用傳統(tǒng)的控制理論對其進(jìn)行控制系統(tǒng)設(shè)計、分析的技術(shù)已經(jīng)相對成熟,在此基礎(chǔ)上研發(fā)出的各種調(diào)速系統(tǒng)已經(jīng)在工業(yè)生產(chǎn)中獲得廣泛應(yīng)用。因此,無刷直流電機(jī)的進(jìn)一步推廣應(yīng)用,在很大程度上依賴于對一些先進(jìn)控制策略的研究。 為了改進(jìn)無刷直流電機(jī)調(diào)速系統(tǒng)的控制性能,本文基于灰色控制理論建立了無刷直流電機(jī)灰色PID控制調(diào)速系統(tǒng)模型。常規(guī)的PID控制以其結(jié)構(gòu)簡單、可靠性高、易于工程實現(xiàn)等優(yōu)點至今仍被廣泛采用。在系統(tǒng)模型參數(shù)變化不大的情況下,PID控制性能優(yōu)良,但無刷直流電機(jī)是一種多變量、非線性的控制系統(tǒng),傳統(tǒng)的PID控制器難以克服電機(jī)自身參數(shù)不確定和擾動帶來的轉(zhuǎn)速偏差問題,無法實現(xiàn)精確快速的控制。灰色控制器是在繼承經(jīng)典PID控制器不依賴于對象模型優(yōu)點的基礎(chǔ)上,通過改進(jìn)經(jīng)典PID固有缺陷而形成的新型控制器,性能優(yōu)良并且算法簡單。該控制器設(shè)計不需要建立電機(jī)的精確數(shù)學(xué)模型,對參數(shù)變化和負(fù)載擾動不敏感。系統(tǒng)較好地實現(xiàn)了給定速度參考模型的自適應(yīng)跟蹤,結(jié)構(gòu)簡單,能適應(yīng)環(huán)境變化,具有較強(qiáng)的魯棒性。 本文以灰色系統(tǒng)理論為基礎(chǔ),把無刷直流電機(jī)的數(shù)學(xué)模型分為確定部分與不確定部分,對被控對象的不確定部分建立灰色模型,進(jìn)行灰色預(yù)估補(bǔ)償,使控制系統(tǒng)的灰量得到一定程度的白化。對所提出的無刷直流電機(jī)灰色PID控制調(diào)速系統(tǒng)進(jìn)行了仿真,對仿真結(jié)果給出理論分析;以TMS320F2812型DSP為核心控制器建立了無刷直流電機(jī)調(diào)速驅(qū)動系統(tǒng)。仿真和實驗結(jié)果表明,基于灰色PID控制算法的無刷直流電機(jī)調(diào)速系統(tǒng)受電機(jī)參數(shù)變化影響較小,具有較高的控制精度和魯棒性,表現(xiàn)出優(yōu)良的動、靜態(tài)性能。
標(biāo)簽: 控制 無刷 直流電機(jī)調(diào)速
上傳時間: 2013-04-24
上傳用戶:lyy1234
混合動力電動汽車(HEV)作為降低城市汽車尾氣污染、減少油耗和調(diào)整能源結(jié)構(gòu)的行業(yè)新技術(shù),前景十分廣闊,日益受到人們的關(guān)注,其開發(fā)也成為新的熱點。驅(qū)動電機(jī)及其控制系統(tǒng)是HEV的核心部分,其性能的優(yōu)劣很大程度上決定了車輛的動態(tài)性能,因此對其進(jìn)行研究具有重要的理論意義和應(yīng)用價值。 本文主要研究混合動力車用交流驅(qū)動電機(jī)控制系統(tǒng),以高性能的數(shù)字信號處理器(DSP)為核心,采用轉(zhuǎn)子磁鏈定向矢量控制(FOC)算法,設(shè)計了一種基于DSP的交流驅(qū)動電機(jī)控制器。主要研究內(nèi)容如下: 首先,在分析國內(nèi)外研究狀況和比較幾種常用驅(qū)動電機(jī)的基礎(chǔ)上,結(jié)合HEV對驅(qū)動電機(jī)的特性要求,選擇交流異步電機(jī)作為HEV的驅(qū)動電機(jī)和基于轉(zhuǎn)子磁鏈定向的矢量控制技術(shù)作為系統(tǒng)開發(fā)方案。 其次,以交流異步電機(jī)的動態(tài)數(shù)學(xué)模型為基礎(chǔ)建立了轉(zhuǎn)子磁鏈位置的電流計算模型,實現(xiàn)交流電機(jī)轉(zhuǎn)矩和勵磁電流分量的有效解耦。結(jié)合矢量控制理論及電壓空間矢量脈寬調(diào)制(SVPWM)技術(shù)給出了混合動力車用驅(qū)動電機(jī)矢量控制系統(tǒng)結(jié)構(gòu)框圖。 最后,以一臺5kw異步電機(jī)作為控制對象,搭建了系統(tǒng)主電路。系統(tǒng)控制電路以TMS32OLF2407A DSP為核心,由電流、電壓及速度等檢測模塊和CAN總線通信模塊組成。系統(tǒng)以CCS2集成開發(fā)環(huán)境為平臺,采用匯編語言編程,設(shè)計了基于DSP的矢量控制具體的軟件實現(xiàn)方法,實現(xiàn)了全數(shù)字化的HEV驅(qū)動電機(jī)矢量控制系統(tǒng)。論文給出了驅(qū)動電機(jī)運(yùn)行的調(diào)試結(jié)果并進(jìn)行了分析。 實驗表明該控制系統(tǒng)響應(yīng)速度快,電壓利用率高,動態(tài)性能好,能夠滿足HEV對驅(qū)動電機(jī)動態(tài)和靜態(tài)性能的要求,對開發(fā)出低成本、高性能的電機(jī)驅(qū)動控制系統(tǒng)具有實用價值。
上傳時間: 2013-07-06
上傳用戶:banyou
燃料電池電動汽車DC/DC變換器的諸如工作電壓、電流、效率、體積、重量、溫度這些參數(shù)指標(biāo)中溫度參數(shù)是一個尤為重要的參數(shù)。如何對DC/DC變換器內(nèi)部多點溫度參數(shù)進(jìn)行實時監(jiān)測從而為DC/DC變換器提供可靠的溫度參數(shù)就成為本課題的直接來源和選題依據(jù)。 USB總線具有即插即用、使用方便、易于擴(kuò)展以及抗干擾能力強(qiáng)等其它總線無法比擬的優(yōu)點。如今USB已經(jīng)成為PC上的標(biāo)準(zhǔn)接口,并迅速占領(lǐng)了計算機(jī)中、低速外設(shè)的市場。而且隨著計算機(jī)功能的不斷強(qiáng)大,虛擬儀器技術(shù)也在不斷發(fā)展。它代表了測量與控制技術(shù)的未來發(fā)展方向。本課題的研究目的就是希望將USB總線技術(shù)和虛擬儀器技術(shù)應(yīng)用到測量系統(tǒng)中,充分利用實驗室現(xiàn)有的資源,設(shè)計一個基于USB總線和LabVIEW的多路溫度測試儀。 在了解DC/DC變換器內(nèi)部主電路的拓?fù)浣Y(jié)構(gòu)的基礎(chǔ)上,考慮測試系統(tǒng)抗干擾技術(shù),選用擴(kuò)展了USB功能的微控制器芯片STM32F103和高精度溫度傳感器PT1000完成了基于恒流源的多通道溫度檢測電路原理圖與印刷電路板設(shè)計。在學(xué)習(xí)USB協(xié)議和電子芯片數(shù)據(jù)手冊的基礎(chǔ)上編寫了測試儀的下位機(jī)固件程序。通過LabVIEW中的NI—VISA開發(fā)驅(qū)動程序?qū)崿F(xiàn)上位機(jī)與USB設(shè)備的通信功能。在LabVIEW虛擬儀器軟件開發(fā)平臺中編寫用戶界面并建立合理的報表生成系統(tǒng),有效存儲數(shù)據(jù)提供用戶查詢。 直接在LabVIEW環(huán)境下通過NI—VISA開發(fā)能驅(qū)動用戶USB系統(tǒng)應(yīng)用程序,完全避開了以前開發(fā)USB驅(qū)動程序的復(fù)雜性,大大縮短了開發(fā)周期,節(jié)省了開發(fā)成本。設(shè)計完畢后對系統(tǒng)進(jìn)行了軟硬件聯(lián)調(diào),通道標(biāo)定和現(xiàn)場試驗,并進(jìn)行了精度分析。實驗結(jié)果表明課題在這一研究過程中取得了預(yù)期的良好結(jié)果。
上傳時間: 2013-06-07
上傳用戶:kennyplds
隨著現(xiàn)代工業(yè)的迅猛發(fā)展,對作為工業(yè)裝備重要驅(qū)動源之一的伺服系統(tǒng)的性能提出了越來越高的要求。永磁同步電機(jī)( PMSM)作為交流伺服系統(tǒng)的執(zhí)行元件具有結(jié)構(gòu)簡單、功率密度高、效率高、易于散熱及維護(hù)保養(yǎng)等優(yōu)點,正得到越來越廣泛地應(yīng)用。要構(gòu)建高性能的伺服系統(tǒng),好的伺服控制系統(tǒng)則必不可缺,本論文主要圍繞高性能的永磁同步電流伺服控制系統(tǒng)這一主題展開研究。 根據(jù)永磁同步電機(jī)的動態(tài)dq數(shù)學(xué)模型,從實現(xiàn)高性能的轉(zhuǎn)矩控制出發(fā),對永磁同步電機(jī)的矢量控制技術(shù)和直接轉(zhuǎn)矩控制技術(shù)等控制策略進(jìn)行了比較分析。針對本伺服系統(tǒng)永磁同步電機(jī)的轉(zhuǎn)子結(jié)構(gòu)特點,選用了具有線性控制轉(zhuǎn)矩特性,能獲得比較平穩(wěn)轉(zhuǎn)矩輸出的基于轉(zhuǎn)子磁場定向的id=0的矢量控制策略,同時還介紹了該策略的重要組成部分空間矢量脈寬調(diào)制技術(shù)(SVPWM),并在MATLAB仿真平臺對所選控制方案進(jìn)行了仿真研究。 對控制系統(tǒng)的軟件部分進(jìn)行了設(shè)計,詳細(xì)分析了針對16位定點DSP控制器TMS320LF2407A的程序設(shè)計特點,建立了電機(jī)的標(biāo)幺值模型,解決了變量的定標(biāo)問題。并介紹了電機(jī)控制程序的總體結(jié)構(gòu)以及相關(guān)模塊的詳細(xì)設(shè)計過程。 為實現(xiàn)高性能的伺服控制系統(tǒng),使伺服系統(tǒng)輸出平滑的轉(zhuǎn)矩,本文還對電壓型PWM逆變器“死區(qū)效應(yīng)”引入的轉(zhuǎn)矩脈動進(jìn)行了分析,分析表明了在永磁同步電機(jī)矢量控制系統(tǒng)中,由“死區(qū)效應(yīng)”造成的誤差電壓矢量與永磁同步電機(jī)轉(zhuǎn)子位置之間的關(guān)系,并應(yīng)用一種實用的死區(qū)補(bǔ)償技術(shù)減小了轉(zhuǎn)矩脈動,提高了系統(tǒng)的性能。 最后在伺服系統(tǒng)實驗平臺上對伺服控制系統(tǒng)進(jìn)行綜合調(diào)試,并在此基礎(chǔ)上做了大量的實驗研究,實驗結(jié)果表明系統(tǒng)性能可靠且擁有優(yōu)良的調(diào)速性能。
標(biāo)簽: 永磁同步電機(jī) 伺服控制 系統(tǒng)研究
上傳時間: 2013-06-18
上傳用戶:scorpion
由于電動助力轉(zhuǎn)向(EPS)系統(tǒng)具有高性能、高效率、低成本、節(jié)能環(huán)保等優(yōu)點,隨著汽車電子技術(shù)的發(fā)展,電動助力轉(zhuǎn)向技術(shù)逐漸取代傳統(tǒng)的液壓助力轉(zhuǎn)向(HPS),成為轉(zhuǎn)向助力技術(shù)的主流。 @@ 本文在詳細(xì)了解EPS系統(tǒng)性能要求和工作原理的基礎(chǔ)上,對各種已有的EPS助力電機(jī)進(jìn)行了總結(jié)和比較。對比結(jié)果表明,無刷直流電機(jī)(BLDC)憑借其顯著的優(yōu)點,成為EPS助力電機(jī)的較優(yōu)選擇。 @@ 無刷直流電機(jī)作為一種由電動機(jī)本體和驅(qū)動器組成的機(jī)電一體化產(chǎn)品,與傳統(tǒng)的直流電機(jī)一樣,具有良好的起動和調(diào)速性能,并且由于用電子換向取代了機(jī)械換向,不存在傳統(tǒng)直流電機(jī)的換向火花和機(jī)械噪聲,在許多性能要求比較高的場合已得到普遍應(yīng)用。隨著電力電子技術(shù)、計算機(jī)技術(shù)的發(fā)展,其應(yīng)用范圍還在進(jìn)一步擴(kuò)展。然而,BLDC電機(jī)作為EPS系統(tǒng)的助力電機(jī)也并非全無缺點。永磁電機(jī)中固有的齒槽轉(zhuǎn)矩的存在,以及由于采用120°換向工作模式造成的轉(zhuǎn)矩波動,都會嚴(yán)重影響EPS系統(tǒng)的操控性能。 @@ 本課題針對無刷直流電機(jī)在汽車電動助力轉(zhuǎn)向系統(tǒng)中的應(yīng)用,根據(jù)EPS系統(tǒng)對助力電機(jī)的要求,設(shè)計了一臺轉(zhuǎn)向助力用永磁無刷直流電動機(jī),并使用有限元方法對電機(jī)性能進(jìn)行了分析。為了反映參數(shù)變化對電機(jī)性能的影響,從而為電機(jī)的設(shè)計提供指導(dǎo),我們還用場路耦合的解析算法對電機(jī)性能進(jìn)行了分析。在分析結(jié)果的基礎(chǔ)上,對永磁電機(jī)中的齒槽轉(zhuǎn)矩進(jìn)行了研究,并針對樣機(jī)提出了齒槽轉(zhuǎn)矩的削弱方法,然后使用三維有限元的方式對所提出的方法進(jìn)行了仿真驗證。 @@ 根據(jù)EPS系統(tǒng)的工作原理,探討了助力電機(jī)的控制策略,并設(shè)計了帶傳感器的無刷直流電機(jī)的控制系統(tǒng)。分別完成控制系統(tǒng)硬件和軟件的設(shè)計,并進(jìn)行了相關(guān)實驗,結(jié)果表明基本達(dá)到了設(shè)計的目標(biāo)。 @@關(guān)鍵詞:EPS、無刷直流電機(jī)、電機(jī)設(shè)計與優(yōu)化、有限元、控制器設(shè)計
標(biāo)簽: EPS 汽車 無刷直流電動機(jī)
上傳時間: 2013-07-29
上傳用戶:cx111111
目前離心機(jī)的變頻控制,采用的多是通用變頻器,沒有自主開發(fā)的離心機(jī)專用的交流調(diào)速控制器。同時,在控制方法上采用的主要還是V/F控制以及矢量控制,而效率更高,性能更好的直接轉(zhuǎn)矩控制方法則還沒有得到廣泛的應(yīng)用。直接轉(zhuǎn)矩控制技術(shù),用空間矢量的分析方法,直接在定子坐標(biāo)系下計算與控制交流電動機(jī)的轉(zhuǎn)矩,采用定子磁場定向,借助于離散的兩點式調(diào)節(jié)(Bang-Bang控制)產(chǎn)生PWM信號,直接對逆變器的開關(guān)狀態(tài)進(jìn)行最佳控制,獲得轉(zhuǎn)矩的高動態(tài)性能。直接轉(zhuǎn)矩控制,控制結(jié)構(gòu)簡單、控制手段直接、信號處理的物理概念明確、轉(zhuǎn)矩響應(yīng)迅速,限制在一拍內(nèi),是一種具有高動態(tài)響應(yīng)的交流調(diào)速系統(tǒng)。本文通過對直接轉(zhuǎn)矩控制系統(tǒng)原理的分析、軟硬件的設(shè)計制作、系統(tǒng)的調(diào)試試驗,得到以下結(jié)論: ⑴直接轉(zhuǎn)矩控制系統(tǒng),控制手段直接、信號處理的物理概念明確、轉(zhuǎn)矩動態(tài)響應(yīng)迅速; ⑵直接轉(zhuǎn)矩控制系統(tǒng)中,低速階段轉(zhuǎn)矩脈動明顯,通過采用異步電動機(jī)適應(yīng)全速的U-I模型,以及扇區(qū)細(xì)化等,可以有效減小轉(zhuǎn)矩脈動;由于轉(zhuǎn)矩和磁鏈采用離散的兩點式調(diào)節(jié),即使在高速運(yùn)行階段轉(zhuǎn)矩也有輕微的脈動,通過細(xì)分磁鏈扇區(qū),采用空間矢量脈寬調(diào)制技術(shù)可以有效減小脈動,提高系統(tǒng)控制性能; ⑶直接轉(zhuǎn)矩控制系統(tǒng)中,檢測環(huán)節(jié)及其重要,特別是電壓、電流的檢測。無論采用哪種電機(jī)模型,電壓和電流都是最主要的參數(shù),準(zhǔn)確的電壓、電流檢測能夠增加電機(jī)模型的正確性,為控制提供基本的保障; ⑷直接轉(zhuǎn)矩控制系統(tǒng)中,對電機(jī)參數(shù)的要求簡單,只需要知道電動機(jī)定子電阻,因此直接轉(zhuǎn)矩控制系統(tǒng)的魯棒性強(qiáng),易于移植。
標(biāo)簽: 離心機(jī) 異步電動機(jī) 直接轉(zhuǎn)矩
上傳時間: 2013-04-24
上傳用戶:weddps
直接轉(zhuǎn)矩控制技術(shù)(DTC)是繼矢量控制技術(shù)之后交流調(diào)速領(lǐng)域中新興的控制技術(shù),它采用空間矢量分析的方法,直接在定子坐標(biāo)系下計算并控制異步電機(jī)的轉(zhuǎn)矩和磁鏈,采用定子磁場定向,直接對逆變器的開關(guān)狀態(tài)進(jìn)行最佳控制,從而能夠快速而準(zhǔn)確地控制異步電動機(jī)的轉(zhuǎn)矩和磁鏈,以獲得轉(zhuǎn)矩的高動態(tài)性能。目前在高速離心機(jī)行業(yè),普遍采用通用型變頻器,其通用性好,但參數(shù)較多,價格較貴,為了降低成本增強(qiáng)控制性能,本文利用直接轉(zhuǎn)矩控制技術(shù)的優(yōu)點,采用直接轉(zhuǎn)矩控制策略設(shè)計并制作了針對高速離心機(jī)的專用變頻器。 本文介紹了異步電動機(jī)和逆變器的基本數(shù)學(xué)模型,分析了異步電機(jī)直接轉(zhuǎn)矩控制的基本原理,以及直接轉(zhuǎn)矩控制系統(tǒng)的基本組成,對直接轉(zhuǎn)矩控制系統(tǒng)進(jìn)行了仿真研究,建立了基于MATLAB/Simulink的仿真系統(tǒng),介紹了仿真模型的各組成部分,包括3/2變換、定子磁鏈、電機(jī)轉(zhuǎn)矩觀測模型、轉(zhuǎn)矩調(diào)節(jié)器、磁鏈調(diào)節(jié)器、扇區(qū)判斷、開關(guān)表選擇等,給出了系統(tǒng)加減負(fù)載和加減轉(zhuǎn)速仿真結(jié)果,仿真結(jié)果表明了其磁鏈軌跡近似為圓形,系統(tǒng)具有良好的動態(tài)和穩(wěn)態(tài)性能,同時證明了建立的轉(zhuǎn)矩和磁鏈觀測模型以及控制算法的正確性和可行性。根據(jù)仿真實現(xiàn)方法以及結(jié)果的指導(dǎo),設(shè)計并制作了整個系統(tǒng)的硬件電路,包括主電路(單相整流、濾波、制動電路、啟動限流電路、逆變電路)、控制電路(DSP、驅(qū)動隔離放大、采樣)并對各器件進(jìn)行選型,給出了硬件各部分電路圖;最后介紹了系統(tǒng)的軟件流程以及各模塊的程序?qū)崿F(xiàn),系統(tǒng)的軟件部分采用C語言進(jìn)行編程,實現(xiàn)了定子相電流的采樣、定子相電壓的計算、定子磁鏈的計算和開關(guān)信號的輸出等功能。在分別對硬件和軟件各部分進(jìn)行調(diào)試后,進(jìn)行了系統(tǒng)的聯(lián)合調(diào)試,以TMS320F2808作為控制器,在一臺功率為1.5KW的交流異步電機(jī)上實現(xiàn)了直接轉(zhuǎn)矩控制。
標(biāo)簽: 直接轉(zhuǎn)矩控制 變頻器
上傳時間: 2013-05-31
上傳用戶:y307115118
近年來,多電平逆變器在高壓大容量電能變換中得到廣泛應(yīng)用,而其控制策略和電路拓?fù)涞纫殉蔀榱搜芯繜狳c。相對傳統(tǒng)的兩電平逆變器,它具有效率高動態(tài)性能好,對電動機(jī)產(chǎn)生的諧波少,適合高壓大容量等優(yōu)點。但隨著電平數(shù)的增加,基本控制算法越來越復(fù)雜,同時還存在中點電壓不平衡等問題。將DSP數(shù)字控制技術(shù)應(yīng)用于多電平逆變器不僅簡化了系統(tǒng)的硬件控制電路,提高了系統(tǒng)性能,還可以實現(xiàn)系統(tǒng)的優(yōu)化控制。 本文以二極管箝位式三電平逆變器為研究對象,首先介紹了三電平逆變器的拓?fù)浣Y(jié)構(gòu)和工作原理,對三電平逆變器的電路方程進(jìn)行了深入的分析,在開關(guān)函數(shù)的基礎(chǔ)上建立了三電平逆變器的數(shù)學(xué)模型。在此基礎(chǔ)上,對空間電壓矢量脈寬調(diào)制(SVPWM)算法進(jìn)行了改進(jìn),并詳細(xì)推導(dǎo)了該調(diào)制算法的計算公式,結(jié)合中點電位控制來確定開關(guān)矢量的作用順序,使仿真和實現(xiàn)都比較容易。然后重點分析了三電平逆變器直流側(cè)電容電壓不平衡問題產(chǎn)生的原因,提出了一種能控制逆變器直流側(cè)電容中點電位平衡的電壓空間矢量脈寬調(diào)制方法。最后采用MATLAB仿真軟件對所推導(dǎo)的三電平逆變器SVPWM調(diào)制算法和中點電位平衡控制方法進(jìn)行了仿真分析,證明了該調(diào)制算法的正確性和可行性。
上傳時間: 2013-05-20
上傳用戶:PresidentHuang
三相電壓不平衡度是衡量電網(wǎng)電能質(zhì)量的一個重要指標(biāo)。在三相系統(tǒng)中,引起電壓不平衡的主要原因是發(fā)電機(jī)的輸出電壓不平衡和負(fù)載不平衡兩方面,電壓不平衡比較嚴(yán)重時,會給系統(tǒng)帶來諸多危害。近年來,STATCOM因其動態(tài)響應(yīng)速度快,電流諧波含量小,裝置體積小等優(yōu)點,在電壓不平衡補(bǔ)償中的應(yīng)用越來越廣。 首先本文研究了基于IGCT的STATCOM主電路。為了獲得更高的輸出電壓,通常需要將IGCT串聯(lián)使用。然而在器件串聯(lián)使用時,由于其特性的差異會產(chǎn)生暫態(tài)電壓分配不均衡,導(dǎo)致個別器件上產(chǎn)生過電壓而威脅器件的安全,嚴(yán)重時會燒毀器件。因此需要采用均壓電路來保證串聯(lián)結(jié)構(gòu)中電壓的平均分配。本文重點對IGCT串聯(lián)均壓電路和緩沖電路進(jìn)行了設(shè)計,在分析串聯(lián)均壓電路的同時,計算了吸收電容和吸收電阻的取值范圍。而后,對緩沖電路進(jìn)行了Pspice仿真,通過仿真驗證了均壓電路的工作效果。結(jié)果表明,吸收電容和吸收電阻的取值合適,能夠?qū)GCT的串聯(lián)運(yùn)行起到很好的保護(hù)作用。本文還對100Kvar/660VSTATCOM的主電路進(jìn)行了參數(shù)設(shè)計,對IGCT的型號和各主要元件進(jìn)行了選擇。 本文重點研究了不平衡系統(tǒng)中STATCOM的控制策略。建立了基于IGCT的STATCOM的數(shù)學(xué)模型;根據(jù)STATCOM的電流暫態(tài)模型,對電流電壓進(jìn)行序分解,并做D—Q坐標(biāo)變換,建立STATCOM在靜止坐標(biāo)系下的正、負(fù)序數(shù)學(xué)模型。基于建立的負(fù)序模型,研究STATCOM在不平衡情況下的控制策略,本文采用無差拍控制方法;根據(jù)實際補(bǔ)償時遇到的問題:收斂速度慢、依賴固定的負(fù)載模型、魯棒性差等,對無差拍控制方法進(jìn)行了優(yōu)化設(shè)計。該優(yōu)化方法在傳統(tǒng)無差拍的基礎(chǔ)上引入了參考電流觀測器和狀態(tài)觀測器;文中具體設(shè)計了這個改進(jìn)無差拍控制器和其相關(guān)電路。經(jīng)分析與仿真驗證了本文提出的優(yōu)化控制方法,將該方法應(yīng)用于STATCOM不平衡補(bǔ)償器,取得了良好的不平衡補(bǔ)償性能、快速的動態(tài)響應(yīng)和良好的魯棒性。
上傳時間: 2013-06-05
上傳用戶:abc123456.
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1