隨著微電子技術的發展,可編程邏輯器件取得了迅速的發展,其功能日益強大,FPGA內部可用邏輯資源飛速增長,近來推出的FPGA都針對數字信號處理的特點做了特定設計,集成了存儲器、鎖相環(PLL)、硬件乘法器、DSP模塊等,通過使用各個公司提供的FPGA開發軟件使用硬件描述語言,可以實現特定的信號處理算法,如FFT、FIR等算法,為電子設計工程師提供了新的選擇。實時圖像處理系統采用FPGA+DSP的結構來完成整個復雜的圖像處理算法。將圖像處理算法進行分類,FPGA和DSP份協作發揮各自的長處,對于算法實現簡單、運算量大、實時性高的這類處理過程由大容量高性能的FPGA實現,DSP則用來處理經過預處理后的圖像數據,來運行算法結構復雜,乘加運算多的算法。整個系統主要包括FPGA處理單元、DSP處理單元以及PCI接口通訊三個部分。主要取得的了以下的研究成果:(1)研究了FPGA的工作原理及應用,完成了Stratix芯片的選型。設計了數字圖像處理板的電路原理圖和PCB設計圖。并對電路板進行調試,工作正常。(2)完成了FPGA程序下載電纜的PCB電路設計,并調試成功,應用到FPGA的調試下載配置中,取得了良好的實驗與經濟效果。(3)充分利用FPGA的設計開發軟件與工具,完成了中值濾波、形態學濾波和自適應閾值的FPGA實現,并給出了詳細的實現過程。將算法下載到FPGA芯片,經過試驗調試,達到要求。(4)研究了PCI接口通訊的實現方式,選用PCI9054芯片實現通訊,完成PCI接口電路設計,經過調試,實現了中斷、DMA等方式,滿足了數據傳輸的要求。(5)學習了C6701DSP芯片的工作特性以及內部功能結構,完成了DSP外圍存儲器的擴展、時鐘信號發生以及電源模塊等外圍電路的設計。
上傳時間: 2013-07-22
上傳用戶:Divine
AES是美國于2000年10月份確立的高級加密標準,該標準的反饋鏈路模式AESCBC加密算法,用于在IPSec中替代DESCBC和3DESCBC。 加密是安全數據網絡的關鍵,要保證在公眾網上傳輸的信息不被竊取和偷聽,必須對數據進行加密。在不影響網絡性能的前提下,快速實現數據加密/解密,對于開發高性能的安全路由器、安全網關等對數據處理速度要求高的通信設備具有重要的意義。 在目前可查詢的基于FPGA技術實現AESCBC的設計中,最快的加/解密速度達到700Mbps/400MHZ。商用CPU奔騰4主頻3.06,用匯編語言編寫程序,全部資源用于加密解密,最快的加密解密速度可以達到1.4Gbps。但根據國外測試結果表明,即使開發的路由器本身就基于高性能的雙64位MIPS網絡處理器,軟件加密解決方案僅能達到路由器所要求的最低吞吐速率600Mbps。 本文首先研究分析了目前幾種實現AESCBC的方法有缺點的情況下,在深入研究影響硬件快速實現AESCBC難點基礎上,設計出一種適應于報文加密解密的硬件快速實現AESCBC的方案,在設計中采用加密解密和密鑰展開并行工作,實現了在線提供子密鑰。在解密中采用了雙隊列技術,實現了報文解密和子密鑰展開協調工作,提高了解密速度。 本文在quartus全面仿真設計方案的基礎上,全面驗證了硬件實現AESCBC方案的正確性,全面分析了本設計加密解密的性能。并且針對設計中的流水線效率低的問題,提出改善流水線性能的方案,設計出報文級并行加密解密方案,并且給出了硬件實現VPN的初步方案。實現了單一模塊加密速度達到1.16Gbps,單一模塊解密速度達到900Mbps,多個模塊并行工作加密解密速度達到6.4Gbps。 論文最后給出了總結與展望。目前實現的AESCBC算法,只能通過仿真驗證其功能的正確性,還需要下載到芯片上做進一步的驗證。要用硬件實現整個IPSec,還要進一步開發基于FPGA的技術。總之,為了適應路由器發展的需求,還有很多技術需要研究。
上傳時間: 2013-05-29
上傳用戶:wangzhen1990
作為一項正在興起的無線應用服務,無線局域網已在機場、校園、會議室、甚至在家庭都有所應用.它正叩開高速無線數據業務市場的大門.目前,無線局域網仍處于眾多標準共存時期.每一標準的背后都有大公司或者大集團的支持.在眾多無線局域網協議中IEEE802.11a協議是很有特色的一個,它的優勢在于采用了正交頻分復用(OFDM)方式來傳輸數據,該技術可幫助提高速度和改進信號質量,并可克服干擾,因此得到眾多關注.為了讓這種高速的局域網真正應用到實際中,我們的項目就是要在硬件上實現基于IEEE802.11a協議的OFDM系統的發射機和接收機,而本文的主要工作就是用FPGA實現這個系統的內接收機.內接收機主要包括同步估計和信道估計.但是目前OFDM系統中包括同步、信道編碼、信道估計、用戶檢測、降低峰均比等一些關鍵技術在具體實現上還存在著一些困難.許多文獻對這些關鍵技術基本停留在理論上的討論,與具體的實現還存在很大的差距.因此本文通過研究同步和信道估計的多種算法的性能和其實現的復雜度,提出一種適合在IEEE802.11a協議環境下的同步算法和信道估計,用FPGA加以實現.首先本文總結了目前OFDM系統信道估計的算法.在此基礎上詳細的討論了基于IEEE802.11a協議的OFDM系統可以采用的信道估計方法:(1)提出了借助訓練序列的LS估計法和LS-average估計法,分別在AWGN信道和多徑信道對這兩種方法進行了比較,證明無論在哪種信道環境下后者性能都要好于前者.為了能夠進一步提高信道估計器的性能,在LS-average算法的基礎上提出了消噪算法(NRA).(2)提出了借助導頻的DFT插值算法.其次本文總結了目前OFDM系統同步的算法.OFDM系統同步包括定時同步和載波同步,其中定時同步又分為符號同步和抽樣同步.本文主要是研究定時同步,而載波同步只是簡單的討論,因為在這項目中這是另有負責人.本文針對基于IEEE802.11a協議的OFDM系統把定時同步分為粗定時同步和細定時同步.然后分別對粗定時同步和細定時同步進行了詳細的討論.其中對粗定時同步的方法有:利用短訓練序列和利用循環前綴,并對這兩種方法進行了比較.對細定時同步是利用導頻來跟蹤.最后根據前面兩章提出的算法所分析的結果,以及突發OFDM系統的信號和信道特征,選取了其中一種信道估計算法和定時同步算法,結合合作伙伴所提出的載波同步算法一起用FPGA實現整個基于IEEE802.11a協議的OFDM系統的內接收機,并分別測試了各個模塊的性能以及綜合模塊的性能.
上傳時間: 2013-05-26
上傳用戶:zhengzg
加密算法一直在信息安全領域起著無可替代的作用,它直接影響著國家的未來和發展.隨著密碼分析水平、芯片處理能力和計算技術的不斷進步,原有的數據加密標準(DES)算法及其變形的安全強度已經難以適應新的安全需要,其實現速度、代碼大小和跨平臺性均難以繼續滿足新的應用需求.在未來的20年內,高級加密標準(AES)將替代DES成為新的數據加密標準.高級加密標準算法是采用對稱密鑰密碼實現的分組密碼,支持128比特分組長度及128比特、192比特與256比特可變密鑰長度.無論在反饋模式還是在非反饋模式中使用AES算法,其軟件和硬件對計算環境的適應性強,性能穩定,密鑰建立時間優良,密鑰靈活性強.存儲需求量低,即使在空間有限的環境使用也具備良好的性能.在分析高級加密標準算法原理的基礎上,描述了圈變換及密鑰擴展的詳細編制原理,用硬件描述語言(VHDL)描述了該算法的整體結構和算法流程.詳細論述了分組密碼的兩種運算模式(反饋模式和非反饋模式)下算法多種體系結構的實現原理,重點論述了基本體系結構、循環展開結構、內部流水線結構、外部流水線結構、混合流水線結構及資源共享結構等.最后在XILINX公司XC2S300E芯片的基礎上,采用自頂向下設計思想,論述了高級加密標準算法的FPGA設計方法,提出了具體模塊劃分方法并對各個模塊的實現進行了詳細論述.圈變換采用內部流水線結構,多個圈變換采用資源共享結構,密鑰調度與加密運算并行執行.占用芯片面積及引腳資源較少,在芯片選型方面具有很好的適應性.
上傳時間: 2013-06-20
上傳用戶:fairy0212
隨著安全通信數據速率的提高,關鍵數據加密算法的軟件實施成為重要的系統瓶頸.基于FPGA的高度優化的可編程的硬件安全性解決方案提供了并行處理能力,并且可以達到所要求的加密處理性能(每秒的SSL或RSA運算次數)基準.網絡的迅速發展,對安全性的需要變得越來越重要.然而,盡管網絡技術進步很快,安全性問題仍然相對落后.由于FPGA所提供的設計優勢,特別是新的高速版本,網絡系統設計人員可以在這些網絡設備中經濟地實現安全性支持.FPGA是實現設計靈活性和功能升級的關鍵,對于容錯、IPSec協議和系統接口問題而言這兩點非常重要.而且,FPGA還為網絡系統設計人員提供了適應不同安全處理功能以及隨著安全技術的發展方便地增加對新技術支持的能力.標準加密/解決以及認證算法,如RC-4、DES、三次DES、MD-5以及安全哈希算法-1(SHA-1)被廣泛用于全球網絡安全系統中.本文介紹了基于PCI總線的加密卡的研制,硬件板卡的結構,著重論述了加密卡上加密模塊的實現,即用FPGA實現3DES及IDEA、MD5算法的過程,加密卡的工作原理,加密卡中多種密碼算法的配置原理,最后對3DES算法及IDEA、MD5算法的實現進行仿真,并繪制了板卡的原理圖,對PCI接口原理進行了闡述.在論文中,首先闡述了數據加密原理.介紹了數據加密的算法和數據加密的技術發展趨勢,并重點說明了3DES的算法.由于加密卡的生存空間在于其高速的加密性能與便捷的使用方式,所以,我們的加密卡采用的是基于PCI插槽的結構,遵從的是PCI2.2規范,理解并掌握PCI總線的規范是了解整個系統的重要一環,本文講述了PCI總線的特點和性能,以及總線的信號.由于遵從高速性的要求,我們在硬件選型的時候,選用的是TI公司高速DSP T M S 3 2 0 C 5 4 x:T I公司新推出的T M S 3 2 0 C 6 x系列D S P功能強,速度也非常快,但目前價格仍然太高,不適合一般加解密使用.而TMS3 2 0 C 5 4 x系列具有性能適中,價格低廉,產品成熟等特點,是較好的選擇.FPGA選用的XILINX公司的XC2V3000,在隨后的文章中,我們將會對這些器件特性做相應說明.并由此得出電路原理圖的繪制.文章的重點之一在于3DES算法及IDEA、MD5算法的FPGA實現,以Xilinx公司VIRTEXII結構的VXC2V3000為例,闡述用FPGA高速實現3DES算法及IDEA、MD5算法的設計要點及關鍵部分的設計.
上傳時間: 2013-04-24
上傳用戶:qazwsc
卷積碼是無線通信系統中廣泛使用的一種信道編碼方式。Viterbi譯碼算法是一種卷積碼的最大似然譯碼算法,它具有譯碼效率高、速度快等特點,被認為是卷積碼的最佳譯碼算法。本文的主要內容是在FPGA上實現約束長度為9,碼率為1/2,采用軟判決方式的Viterbi譯碼器。 本文首先介紹了卷積碼的基本概念,闡述了Viterbi算法的原理,重點討論了決定Viterbi算法復雜度和譯碼性能的關鍵因素,在此基礎上設計了采用“串-并”結合運算方式的Viterbi譯碼器,并在Altera EP1C20 FPGA芯片上測試通過。本文的主要工作如下: 1.對輸入數據采用了二比特四電平量化的軟判決方式,對歐氏距離的計算方法進行了簡化,以便于用硬件電路方式實現。 2.對ACS運算單元采用了“串-并”結合的運算方式,和全并行的設計相比,在滿足譯碼速度的同時,節約了芯片資源。本文中提出了一種路徑度量值存儲器的組織方式,簡化了控制模塊的邏輯電路,優化了系統的時序。 3.在幸存路徑的選擇輸出上采用了回溯譯碼方法,與傳統的寄存器交換法相比,減少了寄存器的使用,大大降低了功耗和設計的復雜度。 4.本文中設計了一個仿真平臺,采用Modelsim仿真器對設計進行了功能仿真,結果完全正確。同時提出了一種在被測設計內部插入監視器的調試方法,巧妙地利用了Matlab算法仿真程序的輸出結果,提高了追蹤錯誤的效率。 5.該設計在Altera EP1C20 FPGA芯片上通過測試,最大運行時鐘頻率110MHz,最大譯碼輸出速率10.3Mbps。 本文對譯碼器的綜合結果和Altera設計的Viterbi譯碼器IP核進行了性能比較,比較結果證明本文中設計的Viterbi譯碼器具有很高的工程實用價值。
上傳時間: 2013-07-23
上傳用戶:葉山豪
該文利用FPGA技術,設計了全概率寬帶數字接收機的實驗平臺,并在其上提出了數字接收機實現的可行性方法,以及對這些方法的驗證.該文的主要貢獻和創新有以下幾個方面.提出了并行結構算法的工程實現,討論了解決前端采樣的高速數據流遠遠超過后端DSP處理能力問題的可行性方法.利用多相濾波下變頻的并行結構特點,使濾波器能夠以高效的形式實現,也使得后端的混頻能夠工作在一個較低的速率上.經過多相濾波下變頻處理后的數據,在速率和數量上都有大幅減少,達到了現有通用DSP器件的處理能力的要求.針對多相濾波下變頻與短數據快速測頻算法的特點,用FPGA搭建了其實驗模型,并利用微機EPP接口,對實驗目標板進行控制并與其進行數據交換.利用FPGA的在線編程特性,可以方便靈活對各種實現方法加以驗證、比較.同時也給調試帶來了方便,可以每個模塊單獨調試而不用改變硬件結構,使調試效率大大提高.該平臺也可用來對其他數字處理算法進行實現性分析與實驗.參考軟件無線電設計的概念和國內外相關文獻,提出了多項濾波下變頻結構的FPGA實現.傳統的DDC通過數字混頻、濾波、抽取實現數字下變頻,在高速A/D和電子偵察環境條件下商用DDC不能使用.該文采用濾波器多相分解方法,按數字混頻序列劃分調諧信道,使用先抽取,后低通濾波,再混頻的數字下變頻結構,高效實現了變載頻帶通信號數字下變頻.結合多相濾波下變頻結構、算法對測頻精度及速度的要求,提出了短數據快速測頻算法的具體實現,使用流水線的設計方法,提高了系統的數據吞吐率,在盡可能短的時間內提供多相濾波下變頻所需的載頻位置信息.以上兩部分的FPGA實現除了純粹的算法模塊外,還包括測試用的外圍模塊,以及運行于實驗平臺上的控制模塊、緩存、數據控制等.這些模塊也用FPGA來實現.
上傳時間: 2013-06-22
上傳用戶:haoxiyizhong
這個是STC單片機的全系列頭文件. 這個是STC單片機的全系列頭文件
上傳時間: 2013-04-24
上傳用戶:1054154823
語音識別技術是信息技術領域的重要發展方向之一,小詞匯量非特定人孤立詞語音識別是語音識別領域中一個具有廣泛應用背景的分支,在家電遙控、智能玩具、人機交互等領域有著重要的應用價值.語音識別芯片從20世紀90年代開始出現,目前的語音識別芯片都是以DSP為核心集成的語音識別系統,算法主要通過軟件實現,為了提高速度和降低成本,下一代語音識別芯片將設計成軟硬件協同實現,本文的目的是使用全硬件方法實現語音識別算法,為軟硬件協同實現的方案提供參考.本論文主要完成了以下工作:(1)在選定的FPGA平臺上,完成了整個系統的硬件設計.(2)對于硬件中難于實現而且占用較多資源的乘法器、求對數、求平方根以及快速傅立葉變換等關鍵模塊,本文都根據電路的具體特點,給出了巧妙的實現方案,完成了算法需要的功能.(3)設計中使用了模塊復用和流水線技術.(4)根據設計結果,給出了各個模塊占用的硬件資源和運行速度.實驗結果表明,本文所設計的硬件系統能夠正常工作,在速度和面積方面都達到了設計要求.
上傳時間: 2013-06-12
上傳用戶:01010101
合成孔徑雷達的實時信號處理系統,可以分成相對獨立的幾個階段,即A/D變換和緩存、距離向預處理器、方位向預處理器、距離向壓縮處理、轉置存儲器、方位向壓縮處理、逆轉置存儲器.合成孔徑雷達預處理的目的,就是緩解高處理數據率和低傳輸數據率的矛盾,使得在不太影響成像質量的前提下,盡量減少傳輸的數據率,有利于后續處理的硬件實現,做到實時處理.論文結合電子所合成孔徑雷達實時成像處理系統,設計開發了基于Xilinx Virtex-E FPGA的星載SAR高速預處理板,該信號處理板處理能力強,結構緊湊,運行效率高;其硬件電路的設計思路和結構形式有很強的通用性和使用價值.論文重點研究了預處理的核心部分—固定系數FIR濾波器的設計問題.而固定系數FIR濾波器的實現問題的重點又是FPGA內部的固定系數FIP濾波器實現問題,針對FPGA內部的查找表資源,我們選擇目前流行的分布式算法來實現FIR濾波器的設計.對比于預處理器中其他濾波器設計方案,基于FPGA分布式算法的FIR濾波器的設計,避免了乘累加運算,提高了系統運行的速度并且節省了大量的FPGA資源.并且由于FPGA可編程的特性,所以可以靈活的改變濾波器的系數和階數.所設計的電路簡單高速,工作正常、可靠,完全滿足了預處理器設計的技術要求.隨著超大規模集成電路技術,高密度存儲器技術,計算機技術的發展,一個全數字化的機載實時成像處理系統的研制,已經不是非常困難的事情了.而在現有條件下,全數字化的高分辨率星載實時成像處理系統的研制,將是一個非常具有挑戰意義的課題,論文以星載SAR的預處理器設計為例,拋磚引玉,希望對未來全數字化星載實時成像處理系統的研制起到一定參考價值.
上傳時間: 2013-07-03
上傳用戶:lanhuaying